
Identifying Anomalies in Graph Streams Using Change
Detection

William Eberle
Tennessee Technological University

Department of Computer Science
Cookeville, TN USA

1-931-372-3278
weberle@tntech.edu

Lawrence Holder
Washington State University

School of Electrical Engineering & Computer Science
Pullman, WA USA
1-509-335-6138

holder@wsu.edu

ABSTRACT
Anomaly detection in graph streams requires both the discovery
of normative subgraph patterns in the stream and then the
identification of subgraphs that are unexpected deviations from
the normative patterns. Both of these processes are
computationally complex, and therefore we should only update
them when necessary. We present an approach based on a change
detection metric used for graph sampling that selectively updates
the normative patterns only when significant change has occurred.
Using a batch processing method on the graph stream, we show
that the change detection approach significantly reduces running
times while maintaining the accuracy of more exhaustive
approaches.

CCS Concepts
• Information systems~Data stream mining
• Computing methodologies~Anomaly detection.

Keywords
Anomaly detection; graph stream; change detection.

1. INTRODUCTION
Many real-world data sets in need of analysis for anomalies (e.g.,
network traffic for potential intrusions; credit card transactions for
fraud; sensor networks for insider threats; etc.), are handled as a
stream – a continuous sequence of ordered data. Because this data
is relational, the stream can be represented as a sequence of edges
added, or modifications made, to a graph. Due to the high volume
and velocity of these graph streams, current graph-based
approaches for anomaly detection do not scale.

In regards to scaling the first step in anomaly detection, which is
to find the normative patterns in the data, there has been some
recent research using graph sampling by Ahmed et al. [3]. In their
work, the concept of change detection is used to determine the
appropriate sampling of a graph in order to discover patterns. We
propose that this concept of using a change detection metric can
also be used to reduce the run-time complexity associated with

discovering anomalous subgraphs in graph streams, while still
maintaining similar accuracies. In particular, if we use the
definition of a graph-based anomaly as one for which anomalous
subgraphs are small deviations from a normative pattern, much
like one would find in real-world scenarios such as fraud or
insider threats, then a sampling approach based upon detecting
change would reduce the time spent discovering what is
normative.

One of the key stumbling blocks to accepting graph-based
anomaly detection approaches in the real-world is the requirement
to discover anomalies in real-time (as in the case of fraud
detection). What we are proposing is applicable to any graph-
based anomaly detection approach that relies on first discovering
normative patterns. In this work, we present a novel graph-based
anomaly detection algorithm that handles graph streams presented
as batches of new edges. For each batch we calculate a graph
property, and if the value of this property has not significantly
deviated from previous batches, we do not attempt to rediscover a
normative pattern, but use the existing normative pattern as the
basis for finding anomalous subgraphs. We evaluate our approach
using three diverse data sets, and show that running time can be
improved without sacrificing accuracy.

2. RELATED WORK
In order to process data as a stream, one must be able to process
elements in a sequential order, restrict the processing space to
something manageable, process each element in a timely fashion,
and minimize the number of passes over the data [1]. The key
issue is that a stream of data is an unbounded sequence of records
which clearly cannot be captured and processed in total. While
much of the work dealing with data streams has not involved
graphs [18], some recent graph streaming research has been
applied to a variety of problems and domains [11][22].

Change detection is the process of identifying differences in the
state of an object by observing it at different times [28].
Variations of change detection methods have been investigated,
primarily for discovering variances in the data in order to predict
future data patterns. One approach is the Cumulative Sum
(CUSUM) method, which attempts to identify abrupt changes in
the statistics of the data [15]. In graphs, change detection involves
the discovery of time points at which a graph changes
significantly. Various metrics involving graph edit distance [14],
graph similarity [21], scan statistics [23], locality-based scan
statistics [30], and commute distance [17][4][26], can be used to
determine if a graph has changed beyond some threshold.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MLG ‘16, August 14, 2016, San Francisco, CA, USA.
Copyright 2016 ACM 1-58113-000-0/00/0010 …$15.00.

While the work of Ahmed et al. [3] successfully dealt with the use
of graph sampling, using change detection as a means of reducing
the time complexity for discovering recurring subgraphs (i.e.,
sampling) is not a viable option for discovering anomalous
subgraphs, as samples may miss potential anomalous subgraphs
which are rare. While normative patterns should be “recurring”
(and hence, normative), anomalous patterns are not, as one would
expect them to occur infrequently. However, the discovery of the
normative pattern is necessary in order to discover anomalous
patterns. Therefore, we hypothesize that we can use a sampling-
based change detection approach to discover normative patterns,
which will then aide us in the detection of anomalies.

3. GRAPH-BASED ANOMALY
DETECTION
In order to lay the foundation for this effort, we hypothesize that a
real-world, meaningful definition of a graph-based anomaly is an
unexpected deviation to a normative pattern. The importance of
this definition (which we more formally define below) lies in its
relationship to any deceptive practices that are intended to
illegally obtain or hide information [20].

Definition 3.1. A labeled graph G = (V,E,λ), where V is the
set of vertices (or nodes), E is the set of edges (or links) between
the vertices, and the function λ assigns a label to each of the
elements in V and E.

Definition 3.2. A subgraph SA is anomalous in graph G if (0
< d(SA,S) < TD) and (P(SA|S) < TP), where P(SA|S) is the
probability of an anomalous subgraph SA given the normative
pattern S in G. TD bounds the maximum distance (d) an anomaly
SA can be from the normative pattern S, and TP bounds the
maximum probability of SA.

Definition 3.3. The anomalous score of an anomalous
subgraph SA based on the normative subgraph S in graph G is
d(SA,S) * P(SA|S), where the smaller the score, the more
anomalous the subgraph.

The advantage of graph-based anomaly detection is that the
relationships between entities can be analyzed for structural
oddities in what could be a rich set of information, as opposed to
just the entities’ attributes. However, graph-based approaches
have been prohibitive due to computational constraints, because
graph-based approaches typically perform subgraph
isomorphisms, a known NP-complete problem. Yet, in order to
use graph-based anomaly detection techniques in a real-world
environment, we need to take advantage of the
structural/relational aspects found in dynamic, streaming data sets.

In order to test our approach, we will implement the publicly-
available GBAD test suite1, as defined by Eberle and Holder
[2007], within our proposed approach. Using a greedy beam
search and a minimum description length (MDL) heuristic,
GBAD first discovers the “best” subgraph, or normative pattern,
in an input graph. The MDL approach is used to determine the
best subgraph(s) as the one that minimizes the following.

where G is the entire graph, S is the subgraph, DL(G|S) is the
description length of G after compressing it using S, and DL(S) is
the description length of the subgraph. The complexity of finding

1 www.gbad.info

the normative subgraph is constrained to be polynomial by
employing a bounded search when comparing two graphs.
Previous results have shown that a quadratic bound is sufficient to
accurately compare graphs in a variety of domains [19].

For more details regarding the GBAD algorithms, the reader can
refer to [12]. In summary, the key to the GBAD approach is that
anomalies are discovered based upon small deviations from the
norm (e.g., insider threat, identity theft, etc.) – not outliers, which
are based upon significant statistical deviations from the norm.

4. STREAMING APPROACH TO GRAPH-
BASED ANOMALY DETECTION
While there has been research that attempts to handle large graphs
by segmenting the graph into smaller, individual partitions
[5][27], these approaches do not deal with anomaly detection, and
the graphs are considered static. Recent research has attempted to
use a batch-based approach on graph streams for the discovery of
anomalies [2][13]. In order to evaluate our approach of using
change detection as a means of reducing the runtime of batch-
based approaches, we will use the general Pattern Learning and
Anomaly Detection in Streams framework (PLADS) described in
the work of Eberle and Holder [13], as Aggarwal et al.’s [2] work
is primarily focused on specific types of undirected graphs. The
idea behind the PLADS approach is to utilize information from
previous batches while processing the current batch in order to
significantly reduce the cost over processing the entire graph, but
maintain similar accuracy. We include the pseudocode for
PLADS as Algorithm 1.

PLADS accepts as input a stream of batches of edges, where the
batches are generated either by partitioning a static graph (such as
using a tool like METIS [16]), or fed in over time (where a batch
represents data over a specified interval).

ALGORITHM 1. Pattern Learning and Anomaly Detection in
Streams (PLADS)
Input: batches of new edges, number of batches in window (N),
number of normative patterns per batch (M)
Output: normative patterns and anomalous subgraphs in current
window
1. Wait for first N batches to arrive; process each in parallel

a. Discover top M normative patterns in each batch.
2. Determine best normative pattern P among NM possibilities.
3. Detect anomalous subgraphs in each of N batches based upon

P.
4. Evaluate anomalous subgraphs across N batches in current

window and report most anomalous subgraph(s).
5. Upon arrival of new batch, do

a. Add new batch to window and remove oldest batch from
window.

b. Determine top M normative patterns from new batch.
c. Determine best normative pattern P’ among all batches in

window.
d. If (P’ ≠ P), each batch discovers new anomalous

subgraphs based upon P’.
e. Else, only new batch discovers anomalous subgraph(s).
f. Evaluate anomalous subgraphs across batches and report

most anomalous subgraph(s).
g. Repeat.

Algorithm 1 is a generic algorithm for applying graph-based
anomaly detection methods to streaming data partitioned into
graph batches. The user can apply any normative pattern
discovery techniques and any graph-based anomaly detection

)()|(),(SDLSGDLGSM +=

algorithms with this approach. To summarize, the PLADS
approach processes the batches in parallel, each reporting what
they discover as the best normative pattern. PLADS then
compares all the choices, and the best normative pattern (i.e., the
most frequent across all batches) is chosen. Then each batch is
evaluated for anomalous subgraphs based upon the best normative
pattern. Finally, a similar comparison to what was performed for
determining the best normative pattern is executed for reporting
the most anomalous subgraph. The process is then repeated on the
next batch, and the oldest batch is removed from the set – thus,
creating a “sliding window” over the graph batches.

The parameters to Algorithm 1 are defined as follows:

N – number of batches in the sliding window. This will be the
initial number of graph batches processed in parallel, and the
number of batches considered for determining the normative
pattern and the anomalous subgraphs as each subsequent batch is
processed. A sliding window consists of the most recent N
batches; older batches are discarded.

M – number of normative patterns to retain. This will be the
number of normative patterns saved from each batch to compare
against other batches.

Z – size of each batch, calculated based upon either the number
of nodes/edges generated, or the time window for which the data
is collected. Different values of Z affect the performance of our
algorithm. Values too small risk missing complex patterns. Values
too large risk unreasonable run times. We vary the value of Z in
the experiments depending upon the domain of the data. This
value is important because our approach assumes that the batches
will be large enough (and numerous enough) to discover the
normative pattern.

For more details regarding the above approach, the reader can
refer to Eberle and Holder’s work [13]. It is relevant to point out
that PLADS was implemented in the above work using GBAD for
evaluating anomalous subgraphs, whereby PLADS provides the
normative pattern to GBAD for its subsequent anomaly detection.

5. CHANGE DETECTION FOR ANOMALY
DETECTION
Current approaches using graph properties to determine structural
changes in a graph face two primary issues: (1) the scalability of
calculating the corresponding metric on a large graph, and (2) the
inability to isolate the actual structural change associated with the
metric. However, for our approach, we use these graph property
metrics on considerably smaller graphs, i.e., batches. Also, we do
not need to know what the actual structural changes are, only that
a graph has structurally changed. We then use this knowledge to
determine if we need to re-calculate the normative pattern. Using
this knowledge, the calculation of a normative pattern will be
infrequent, and computation time will be greatly reduced.

5.1 Graph Properties
In order to test the effectiveness of this approach, we experiment
with different types of graph metrics commonly used when
studying graph properties. Each of these graph property metrics
represent some measure of the overall structure of a graph, and as
such, will enable us to determine whether or not normative
structure has potentially changed. Other graph property metrics,
and their combinations, will be explored in the future.

Connectedness. Broder et al. [7] define the “connectedness” C
of a graph based on the set P, that contains all pairs (u,v) such that

there is a path from u to v in G, where the cardinality of P is
divided by the number of possible pairs: C = |P| / |V|2.

Density. Scott [24] defines density D as the ratio of the number
of actual edges E to the maximum possible number of edges: D =
|E| / |V|2.

Clustering Coefficient. Boykin and Roychowdhury [7] identify
the graph clustering coefficient CC to be the average of the
clustering coefficients of each vertex:

𝐶𝐶 =
1
|𝑉!|

2|𝐸!|
𝑘!(𝑘! − 1)

|!!|

!!!

where |V’| is the total number of vertices of degree greater than 1,
|Ei| is the number of edges connected to i, and ki is the degree of
vertex i.

Eigenvalue. The maximum eigenvalue of the graph’s
adjacency matrix provides a useful graph property, as also noted by
Chung et al. in their study of eigenvalues as it relates to graphs [9].

Community Modularity. In general, community modularity is
the difference between the fraction of edges inside the community
(in our case, a graph batch) and the fraction of edges expected by a
random version of the network, preserving the degree distribution
of the nodes [29]. Using the Clauset-Newman-Moore community
modularity detection method for large graph networks [10], we
iteratively compare two communities that contribute maximum
positive value to global modularity, and merge them, until all
communities are detected, returning the community modularity of
the graph.

Number of Triangles. In social sciences and related fields,
triads, or subgraphs of three nodes, have shown to aide in the
understanding of social groups [8]. For this metric, we will simply
count the number of triangles in the corresponding graph.

Entropy. We use the Sole and Valverde [25] definition of
entropy whereby instead of just analyzing the degree distribution,
Pk, in a graph, they use the remaining degree, which is the number
of edges leaving a vertex and not arriving to a vertex. This new
distribution, q(k), is defined as:

𝑞 𝑘 =
𝑘 + 1 𝑃!!!

𝑘

They then use this distribution to calculate the following entropy
measure:

𝐻 𝑞 = − 𝑞 𝑘 log (𝑞 𝑘)
!

!!!

The entropy of the graph is a measure of uncertainty. A higher
degree of entropy implies a wider range of unique patterns.

Each of the above metrics measures some aspect of the structure
of a targeted graph. The graph property values calculated, which
we call GP, indicate some measure of structure. Thus, the
difference between a graph G1’s graph property GP1, and a graph
G2’s graph property GP2, is an indicator that there is a structural
difference between graphs G1 and G2. We will use the knowledge
of that difference using a form of cumulative summation to
determine when the normative pattern in a stream needs to be re-
evaluated.

5.2 Change Detection Algorithm
In order to evaluate the effectiveness of each of the previously
discussed graph properties, we modify Algorithm 1 to include the

calculation and evaluation of a specified graph property metric.
Algorithm 2 shows our proposed algorithm with modifications
and additions in bold.

The use of µ and σ allows a cumulative summation to determine
when a new normative pattern needs to be discovered due to a
change beyond a standard deviation, without having to resort to a
user-defined threshold. Even though we are currently only
determining a single best normative pattern (Steps 2 and 5d), we
can modify the algorithm to consider multiple normative patterns,
and anomalies to them. However, we have only focused on the top
normative pattern here, mainly to reduce the sources of variance
in the comparison of the different metrics for change detection.

ALGORITHM 2. Pattern Learning and Anomaly Detection in
Streams using Change Detection (PLADS-CD)
Input: batches of new edges, number of batches in window (N),
number of normative patterns per batch (M)
Output: normative patterns and anomalous subgraphs in current
window
1. Wait for first N batches to arrive; process each in parallel

a. Discover top M normative patterns in each batch.
b. Calculate and store graph property GP metric for

each batch.
2. Determine best normative pattern P among NM possibilities.
3. Detect anomalous subgraphs in each of N batches based upon

P.
4. Evaluate anomalous subgraphs across N batches in current

window and report most anomalous subgraph(s).
5. Upon arrival of new batch, do

a. Add new batch to window and remove oldest batch
from window.

b. Calculate and store graph property metric GP’ for
new batch.

c. Calculate mean µ and standard deviation σ based
on graph property metrics in current window.

d. If |GP’ - µ | > σ
i. Determine top M normative patterns from new

batch.
ii. Determine best normative pattern P’ among all

batches in window.
iii. if (P’ ≠ P), each batch discovers new anomalous

subgraphs based upon P’.
iv. Else, only new batch discovers anomalous

subgraph(s).
e. Else, new batch discovers anomalous subgraph(s)

using P from previous batches.
f. Evaluate anomalous subgraphs across batches and

report most anomalous subgraph(s).
g. Repeat.

It is important to note that we never assume that the normative
pattern is the same between each evaluation of patterns, i.e., the
sliding window. The PLADS approach (Algorithm 1) recalculates
the normative pattern each time a new batch of data is introduced
into the window. With our proposed approach (Algorithm 2), we
use graph property metrics to determine whether or not the graph
structure has changed enough to warrant a recalculation of the
normative pattern, and the amount of change is immaterial (i.e., it
can be a completely new normative pattern).

6. EVALUATION DATA SETS
Three different data sources are used to evaluate our approach: e-
commerce review data, social network data, and network traffic.

Each source varies in graph structure, and will be used to generate
graph stream batches of various sizes.

6.1 Berlin
The Berlin SPARQL Benchmark2 is a synthetic generator built
around an e-commerce use case in which a set of products is
offered by different vendors and consumers post reviews about
the products. The Berlin data model contains the following
classes: Product, ProductType, ProductFeature, Producer,
Vendor, Offer, Review, and Person. We chose to represent this
data as a graph where classes are nodes, associations are edges,
and attributes are linked to their corresponding class (node).
Figure 1 shows our graph representation, where every class vertex
has an associated month, day, and year (shown only for the
Review class in the figure).

The Berlin data generator creates an XML file of products along
with associated information, offers, and reviews. The user
specifies the number of products generated, and all products,
offers, and reviews are generated between the dates of March 15,
2008 and June 19, 2008. We create batches based upon offer and
review times, where each batch consists of all offers and reviews
for products in a specified “time window” (e.g., batch 1 contains
all product offers and reviews made on March 15, batch 2
contains all product offers and reviews made on March 16, etc.).
In order to evaluate our approach on a volume that is more
representative of a graph stream, we specify increasing amounts
of products and batches. Also, given that “anomalies” inherent in
the Berlin data are uninteresting, and do not represent the types of
anomalies that one might find in real data of this type (i.e.,
products being sold and associated reviews), we seeded the data
with unusual years (i.e., publication dates that would appear
suspicious), and unusual publishers (i.e., people that normally do
not publish in the associated venue).

ProductProducer

Product
Type

Product
Feature

Offer

Review Person

Vendor

producer

type

productFeature

offer

vendor

review

reviewer

<subClass
Of>

subClassOf

<country>

country

<id>

id

<country>country

<id>

id

<id>

id

<id>

id

<id> id

<id>
id

<price>

price

<validfrom>	
-	<month>

validFromMonth

<delivery
Days>

deliveryDays

<reviewDate>	
-	<month>

reviewMonth

<rating1>

rating1 <name>

name

<country>

country

<reviewDate>	
-	<day>

reviewDay

<reviewDate>	
-	<year>

reviewYear

<validTo>	
-	<year>

validToYear

<validTo>	
-	<day>validToDay

<validTo>	
-	<month>

validToMonth

<validfrom>	
-	<day>

validFromDay

<validfrom>	
-	<year>

validFromYear

<rating2>

rating2

<rating3>

rating3

<rating4>

rating4

<id>

id

<id> id

Figure 1. Graph representation of Berlin data.

2 http://wifo5-03.informatik.uni-

mannheim.de/bizer/berlinsparqlbenchmark/

6.2 LSBench
The Linked Stream Benchmark (LSBench)3 data generator
generates data that represents users as the static data, and their
actions as a data stream, including GPS locations, posts, and
photo albums, as well as “like”s and “know”s. We generate RDF
triples of varying sizes and time periods, that contain user
information, and their associated locations, devices used, postings,
photos, likes, and whom they know.

We represent the LSBench objects as vertices, and actions as
edges. Figure 2 presents the graph topology of the streaming data.
Varying the number of users between 1000 and 4000 results in 1-
2M edges per batch, depending on the time period of the captured
data, which varies from every day to every minute. In order to
evaluate our approach on a volume that is more representative of a
graph stream, we specify increasing numbers of users. And,
similar to the Berlin data, as there are no intrinsic anomalies
created by the LSBench generator, we will seed various types of
anomalies, including unusual likes (e.g., a person liking a group
that does not fit their usual profile) and unusual follows (e.g., a
person joining a forum that is different from the forums they
typically follow).

Figure 2. Graph topology of streaming LSBench data.

6.3 CAIDA
The CAIDA (Center for Applied Internet Data Analysis) AS data
set4 represents the topology of the internet as the composition of
various Autonomous Systems. Each of the AS units represents
routing points through the internet.

One example of network traffic collected by CAIDA represents a
dynamic denial-of-service (DDOS) attack at a single location. We
represent this data as a graph composed of ~25K vertices and
~100K edges, with each AS depicted as a vertex and an edge
indicating a peering relationship between the AS nodes. Figure 3
shows a portion of the AS graph, where the rectangle indicates the
normative pattern and the emboldened edge indicates the
anomalous structure found by GBAD. However, even if we

3 https://code.google.com/archive/p/lsbench/
4 www.caida.org/data/active/as-relationships

represent the data as a graph stream, we are only processing a
total of ~100K edges. In order to evaluate our approach, we need
to scale up to graph streams that may produce millions, if not
billions, of edges. For this particular data set, we accomplish this
by replicating the data. Then, to experiment using the approach
identified in Algorithm 1, we use the METIS tool in order to
partition the graph into smaller, roughly equal-sized subgraphs
[16]. These subgraphs are then streamed in to our approach as
batches of edges.

Figure 3. Normative pattern (square) and anomaly (bold) discovered in the
CAIDA dataset.

7. EXPERIMENT RESULTS
First, we will present summarized results across the different data
sets, and then we will present some detailed results where we vary
the values for N, M, and Z, as well as the hardware, to gain some
further insights into our proposed approach.

Table 1 shows a summary of the results from Algorithm 1 (shown
as “baseline”) versus the different change detection approaches
using Algorithm 2, for stream rate (edges per second), recall, and
false-positive-rate, with best approach in bold. In these results we
calculate “Recall” as the percentage of targeted anomalous
subgraphs that are discovered (i.e., accuracy), and “False Positive
Rate” (FP Rate) as the number of reported anomalies minus the
true positives, divided by the number of reported anomalies,
multiplied by 100 (i.e., the inverse of precision). In addition, it
should be noted that we chose a TD value of 0.2 and TP is bound
by the number of instances of the SA as compared to instances of
other subgraphs (per Definition 3.2). Again, the choice of TD is
important because a value too small may miss the anomalous
substructures, and a value too large may result in too many false
positives. All of the results shown in Table 1 were performed
using a Debian 6.0, 64-bit server with 24GB of RAM and 8 cores
@ 2.27 GHz.

First, one notices that all of the change detection approaches
implemented in Algorithm 2 are faster than the baseline approach
(i.e., able to process more edges per second), which was to be
expected as fewer re-evaluations of the normative pattern occur.
In some instances, we realize over a 96% speedup. However, for
the Berlin data set, while the clustering coefficient and triangles
approaches are faster than the baseline, this is because there are
never any future normative pattern evaluations beyond the initial
set of N batches. The clustering coefficient never deviates enough
to warrant a re-evaluation of the normative pattern, and there are
no triangles in the data. This could be addressed by a re-
evaluation of the normative pattern after X iterations (or X
amount of time) even if the change detection approach is not

photo

<location>

<agent>

location

agent

photo_album<title> title

user	...

creator_of	

container_of	

user	...

like	

usertag	

gps

trackedAt	

<location>

trackedLocation

<browser>
browser

postcreator_of	

forum

container_of	

<agent>

agent
<browser>

browser

<hashtag>

hashtag

detecting any change. (It should also be noted that the overhead of
calculating the graph properties is included within the overall
edges/second rate – but will be further reported shortly in a more
detailed analysis.) Second, none of the change detection
approaches used in Algorithm 2 achieve 100% recall across all of
the data sets. While none achieve 100% recall in the Berlin data,
density and entropy discover all of the anomalous subgraphs with
the LSBench data, and connectedness, density, and community
have 100% recall with the CAIDA data. Third, no change
detection approach has the lowest FP Rate across all of the data
sets. The clustering coefficient and triangles approaches have
lower FP Rate than the baseline on the Berlin data. In fact, all but
community achieve a 0% FP Rate on the CAIDA data.

Table 1. Summary of results.
Data
Source

Approach Edges/Sec Recall

FP Rate

berlin

baseline 141 100 2.62
connected 216 93 5.35
density 221 90 5.05
clustering 257 46 1.40
eigenvalue 224 86 5.02
community 217 83 5.04
triangles 277 46 1.40
entropy 220 93 4.25

lsbench

baseline 157 100 17.82
connected 216 96 18.67
density 196 100 19.31
clustering 241 96 19.28
eigenvalue 232 88 21.82
community 241 96 18.76
triangles 239 80 21.06
entropy 191 100 20.39

caida

baseline 168 100 1.72
connected 243 100 0
density 274 100 0
clustering 229 75 0
eigenvalue 243 75 0
community 227 100 0.03
triangles 264 75 0
entropy 235 100 0

In terms of accuracy, we miss some targeted anomalous subgraphs
because of our definition of an anomaly, which is based upon
subgraph differences when compared to the normative pattern. In
this case, sometimes the structure of a graph does not deviate
enough between batches, leading to an older normative pattern
being used for anomaly detection, when in reality the normative
pattern has changed and was needed to discover the targeted
anomalous subgraph. Across all of the change detection methods,
we realize an average reduction of normative pattern discoveries
of ~75% (i.e., only ¼ of the number of normative subgraph
discoveries takes place).

In terms of the high false-positive rate when analyzing the
LSBench data, this can be attributed to the graph structure of that
particular domain. The CAIDA data set is fairly consistent in
structure, with only a few unique labels and subgraphs. The Berlin
data generator produces a consistent structure, with growth of
vertices and edges linear to the user-specified number of products.
However, the LSBench data generator is much more random, as
not every user gets the same number of connections to forums,
user groups, etc. In addition, the generator is very parametric,

where the user must specify a level of noise greater than zero (i.e.,
there will always be noise).

We now take a closer look at more detailed results using just the
LSBench data. Here we vary the number of batches in the sliding
window (N) from 3 to 7. The total number of edges processed in a
complete run range from 3,868,915 up to 13,296,977. The batch
sizes (Z) are based upon the total number of edges divided by the
size of an individual window, for which we chose 4 minute
windows and 6 minute windows, and varied the overlap between
each window from no overlap to 5 minutes of overlap (for a 6
minute window). We also varied M (number of normative patterns
to retain) from 3 to 20, with no perceivable differences.

Figures 4-8 represent the results of these experiments on the
LSBench data, averaged over all values of Z. We also used a
different set of hardware (48 cores from two Intel(R) Xeon(R)
CPU E5-2680 v3 @ 2.50GHz, and a total of 125GB RAM), so as
to measure the effect that more memory and faster CPUs would
have on this approach.

Figure 4. Average run time.

Figure 5. Average number of edges processed per second.
From these detailed results, we observe the following. First, as
shown in Figure 4 and Figure 5, when N is small, our approach
detects anomalous subgraphs in almost half the time. However, as
N increases, the running times and edge processing rates converge
(i.e., running times are similar). There are several reasons for this.
Intuitively, as the number of batches in the window (N) increases,
more and more of the complete graph is being processed. In
addition, our implementation of Algorithm 2 is file-based, rather
than memory-based, and the more batches there are, the more
normative patterns and anomalous subgraphs need to be compared

(file I/O overhead). Finally, in addition to implementing a
memory-based version, we could also add comparison checks
such that if the normative pattern has not changed between
batches, a graph match is not performed again, thereby avoiding
redundant work.

Figure 6. Average % of targeted anomalies discovered.

Figure 7. Average false positive rate.

Figure 8. % of total time spent calculating metric.
Second, in terms of discovering our targeted anomalies (as shown
in Figure 6), except for when we use eigenvalue and clustering as
our metric for determining when the normative pattern needs to be
re-evaluated, accuracy is similar to PLADS. In other words, using
a graph property metric does not significantly affect our ability to
discover anomalies.

Third, except for when the eigenvalue metric is used with small
values for N, the false positive rate is better than the baseline
PLADS approach, and fairly consistent, no matter what value for
N is chosen (Figure 7). This was one of the more surprising
results. What this tells us is that when we calculate the normative
pattern with every new batch (as is done with the PLADS
approach), noise is affecting the normative pattern discovery. The
result is a “local” normative pattern, leading to the non-discovery

of the targeted anomalous subgraph. Whereas, using the graph
metric to determine when to re-evaluate for a normative pattern,
our approach recognizes that the overall graph structure has not
really changed, and thus the “global” normative pattern is retained
for anomaly detection.

Fourth, Figure 8 shows the percentage of the total time that was
spent calculating each metric. Obviously, calculating entropy took
the longest, followed by community. However, the other metrics
took less than 0.5% of the total time, and calculating density was
less than 0.02% on average. So, in general, little overhead is
needed to achieve a significant speed-up towards the discovery of
anomalous subgraphs.

Finally, we did observe a significant speed-up between the two
platforms – one with 24GB of RAM and 2.27 GHz cores, and one
with 125 GB of RAM and 2.50 GHz cores. Runs on the latter
platform were significantly faster, with an average speed-up of
~20%, and up to 36% faster in the best case. We also notice that
(regardless of the hardware) more edges are processed per second
with a larger batch size (i.e., going from a batch size of 4 minutes
up to 6 minutes). This is probably due to less overhead because
the number of batches decreases as the size of the batches
increases. In addition, the more overlap there is between batches,
the faster it runs, albeit at the sacrifice of accuracy. The speed-up
is probably due to less volatility in the overall graph structure,
thus less normative pattern evaluations; while the decrease in
accuracy could be related to multiple anomalous subgraphs
appearing in the same batch, making them less anomalous due to
their repetition.

In general, using change detection within a parallel, batch
streaming approach like PLADS allows us to maintain similar
anomaly detection accuracies with low false positive rates. Based
upon our results, in order to significantly reduce the run-time and
thus increase the edge processing throughput, we need to
minimize the number of batches (N). Whereas, accuracy and
false-positive rates appear to be unaffected by the choice of N,
with accuracy results that are linear once N reaches 5 and false
positive rates that are consistent for any value of N.

8. CONCLUSIONS AND FUTURE WORK
Integrating change detection into a streaming approach for graph-
based anomaly detection results in a significant speed-up in
processing, with most instances resulting in slightly less accuracy,
and a minor increase in false-positive rates. However, for several
of the change detection methods, as the size of the data sets
increase, accuracy reaches baseline levels of 100%, and false-
positive rates are actually better than the baseline. Considering
that our target is real-world graph streams (i.e., continuous,
unending data), these results are promising. In the future, we will
develop an incremental approach that processes only the stream of
graph changes over time, where normative patterns and anomalies
are updated only as necessary based on the impact of the changes.
This will allow us to remove the current “boundary issues”
associated with anomalous subgraphs that could span graph
batches. Further speedup is possible by exploiting inherent
parallelism across batches. We plan to evaluate our algorithms on
other datasets, including a Nokia mobile data set, and actual
traffic flows collected from our institution-level network,
especially in terms of “keeping up” with such high-speed streams.

Another future objective is to investigate other approaches that
can better handle noise – i.e., non-targeted anomalies. As
discussed earlier, if we increase the size of the processing
window, we can reduce the number of false positives albeit at the

sacrifice of speed. In addition, since results vary across the
different data sources, we will also explore additional metrics and
combination of metrics to ideally identify an indicator that works
across domains.

9. ACKNOWLEDGMENTS
This material is based on work supported by the National Science
Foundation (NSF) under Grant Nos. 1318913 and 1318957.
Support for CAIDA’s Internet Traces is provided by the NSF, the
US Department of Homeland Security, and CAIDA Members.

10. REFERENCES
[1] Aggarwal, C. and Wang, H. 2010. Managing and mining

Graph Data. vol. 40, pp. 487–513.

[2] Aggarwal, C., Zhao, Y., and Yu, P. 2011. Outlier detection in
graph streams. In Proceedings of the 27th International
Conference on Data Engineering (ICDE), Hannover,
Germany, pages 399–409.

[3] Ahmed, N., Neville, J., and Kompella, P. 2014. Network
sampling: from static to streaming graphs. ACM
Transactions on Knowledge Discovery from Data (TKDD),
Vol 8, Issue 2, No.7, pp. 1-56.

[4] Albano, J. and Messinger, D. 2012. Euclidean commute time
distance embedding and its application to spectral anomaly
detection. SPIE Defense, Security, and Sensing. International
Society for Optics and Photonics.

[5] Andersen, R., Chung, F., and Lang, K. 2006. Local graph
partitioning using pagerank vectors. In Proceedings of the
47th Annual IEEE Symposium on Foundations of Computer
Science, pages 475–486. IEEE Computer Society.

[6] Boykin, P.O., and Roychowdhury, V.P. 2005. Leveraging
social networks to fight spam. Computer (Long. Beach.
Calif). vol. 38, pp. 61–68.

[7] Broder, A., Kumar, R., Maghoul, F., Raghavan, P.,
Rajagopalan, S., Stata, R, Tomkins, A., and Wiener, J. 2000.
Graph structure in the web. Computer Networks, Volume 33.
pp. 309-320.

[8] Chin, G., Marquez, A., Choudhury, S., and Feo, J. 2012.
Scalable triadic analysis of large-scale graphs: multi-core vs.
multi-processor vs. multi-threaded shared memory
architectures. In Proceedings of the 2012 IEEE 24th
International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD '12). IEEE
Computer Society, Washington, DC, USA, 163-170.

[9] Chung, F., Lu, L., and Vu, V. 2003. Eigenvalues of random
power law Graphs. Annals of Combinatorics, volume 7. pp.
21-33.

[10] Clauset, A., Newman, M., and Moore, C. 2004. Finding
Community Structure in Very Large Networks. Physical
review E, Volume 70, Issue 6, American Physical Society
(publisher).

[11] Dasgupta, A., Kumar, R., and Sivakumar, D. 2012. Social
sampling. In KDD, pp. 235-243.

[12] Eberle, W. and Holder, L. 2007. Anomaly detection in data
represented as graphs. Intelligent. Data Analysis, vol. 11, pp.
663–689.

[13] Eberle, W. and Holder, L. 2015. Scalable anomaly detection
in graphs. Intelligent Data Analysis, vol. 19, no. 1, pp. 57–
74.

[14] Gao, X., Xiao, B., Tao, D., and Li, X. 2010. A survey of
graph edit distance Pattern Anal. Appl., vol. 13, pp. 113–129.

[15] Gustafsson, F. 2000. Adaptive filtering and change detection,
John Wiley & Sons, Ltd.

[16] Karypis, G. 2011. METIS: A software package for
partitioning unstructured graphs. Version 5.0.

[17] Khoa, N. and Chawla, S. 2010. Robust outlier detection
using commute time and eigenspace embedding. Advances in
Knowledge Discovery and Data Mining. Springer Berlin
Hiedelberg. p422-434.

[18] Krempl, G., Spiliopoulou, M., Stefanowski, J., Žliobaite, I.,
Brzeziński, D., Hüllermeier, E., Last, M., Lemaire, V.,
Noack, T., Shaker, A., and Sievi, S. 2014. Open challenges
for data stream mining research. ACM SIGKDD Explor.
Newsl. vol. 16, no. 1, pp. 1–10.

[19] Kukluk, J., Holder, L., and Cook, D. 2004. Algorithm and
Experiments in Testing Planar Graphs for Isomorphism.
Journal of Graph Algorithms and Applications, Volume 8,
Number 3.

[20] Levi, M. 2001. Money laundering and its regulation. The
ANNALS of the American Academy of Political and Social
Science, vol. 582. pp. 181–194.

[21] Papadimitriou, P., Dasdan, A., and Garcia-Molina, H. 2010.
Web graph similarity for anomaly detection. J. Internet Serv.
Appl., vol. 1, pp. 19–30.

[22] Pavan, A, Tangwongsan, K., Tirthapura, S., and Wu, K.L.
2013. Counting and sampling triangles from a graph stream.
VLDB 6, 14, pp. 1870-1881.

[23] Priebe, C.E., Conroy, J.M., Marchette, D.J., and Park, Y.
2005. Scan statistics on Enron graphs. Comput. Math. Organ.
Theory, vol. 11, pp. 229–247.

[24] Scott, J. 2000. Social Network Analysis: A Handbook. SAGE
Publications, Second Edition. pp 72-78.

[25] Sole, R. and Valverde, S. 2004. Information theory of
complex networks: on evolution and architectural
constraints. Springer-Verlag, Lecture Notes Physics. vol 650,
pp. 189–207.

[26] Sricharan, K. and Das, K. 2014. Localizing anomalous
changes in time-evolving graphs. Proceedings of the 2014
ACM SIGMOD International Conference on Management of
Data. ACM.

[27] Sun, J., Faloutsos, C., Papadimitriou, S., and Yu, P.S. 2007.
Graph-Scope: parameter-free mining of large time-evolving
graphs. In Proceedings of the13th ACM International
Conference on Knowledge Discovery and Data Mining
(SIGKDD), San Jose, CA, pages 687–696. ACM.

[28] Tran, D.-H., Gaber, M.M., and Sattler, K.-U. 2014. Change
detection in streaming data in the era of big data: models and
issues. In ACM SIGKDD Explorations Newsletter - Special
issue on big data. no. 1, pp. 30–38.

[29] Viera, V., Xavier, C., Ebecken, N., and Evsukoff, A. 2014.
Performance evaluation of modularity based community
detection algorithms in large scale networks. In
Mathematical Problems in Engineering, Volume 2014.

[30] Wang, H., Tang, M., Park, Y., and Priebe, C.E. 2014.
Locality statistics for anomaly detection in time series of
graphs. IEEE Trans. Signal Processing, vol. 62, pp. 703–
717.

