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The authors present the use of graph-based approaches to discov-
ering anomalous instances of structural patterns in data that rep-
resent insider threat activity. The approaches presented search for
activities that appear to match normal transactions, but in fact are
structurally different. The authors show the usefulness of applying
graph theoretic approaches to discovering suspicious insider activ-
ity in domains such as social network communications, business
processes, and cybercrime. The authors present some performance
results to show the effectiveness of our approaches, and then con-
clude with some ongoing research that combines numerical anal-
ysis with structure analysis, analyzes multiple normative patterns,
and extends to dynamic graphs.
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INTRODUCTION

The ability to mine structurally complex data has become the focus of many
initiatives, ranging from business process analysis to cybersecurity. Since
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Insider Threat Detection 33

September 11, 2001, there has been an increasing emphasis on applicable
methods for analyzing everything from bank transactions to network traffic,
as our nation scours individual communications for possible illegal or terrorist
activity.

Protecting our nation’s cyberinfrastructure and securing sensitive infor-
mation are critical challenges for both industry and homeland security. One
of the primary concerns is the deliberate and intended actions associated
with malicious exploitation, theft, or destruction of data, or the compromise
of networks, communications or other information technology resources, of
which the most harmful and difficult to detect threats are those perpetrated
by an insider. However, current efforts to identify unauthorized access to
information such as what is found in document control and management
systems are limited in scope and capabilities. We propose to address these
challenges by analyzing the relations among entities in the data.

The ability to mine data for nefarious behavior is difficult because of
the mimicry of the perpetrator. If a person or entity attempts to participate in
some sort of illegal activity, he or she will attempt to convey his or her actions
as close to legitimate actions as possible. Recent reports have indicated that
approximately 6% of revenues are lost as a result of fraud, and almost 60% of
those fraud cases involve employees (Association of Certified Fraud Examin-
ers, 2006). The Identity Theft Resource Center recently reported that 15.8% of
security breaches so far in 2008 have come from insiders, up from 6% in 2007
(Foley, 2008). Various insider activities such as (a) violations of system secu-
rity policy by an authorized user; (b) deliberate and intended actions such
as malicious exploitation, theft, or destruction of data; (c) the compromise of
networks, communications, or other information technology resources; and
(d) the difficulty in differentiating suspected malicious behavior from normal
behavior have threatened our nation’s security. Organizations responsible for
the protection of their company’s valuable resources require the ability to
mine and detect internal transactions for possible insider threats. Yet, most
organizations spend considerable resources protecting their networks and
information from the outside world, with little effort being applied to the
threats from within.

Cybercrime is one of the leading threats to company confidential data
and resources. A recent study by the Ponemon Institute (2009) surveyed
577 information technology practitioners, who rated the issue of cybercrime
as the top trend in their industry for the next few years, over such hot
topics as cloud computing, mobile devices, and peer-to-peer sharing. The
U.S. Department of Justice, in its “Computer Crime & Intellectual Property
Section,” (2009) reported six incidences in the past month alone, ranging
from trafficking in counterfeit computer programs to accessing government
databases. News stories detail how insiders have bilked corporations out of
millions as a result of their ability to access sensitive information— sometimes
after they have resigned from a company that did not immediately remove
their confidential access (Vijayan, 2009). There has even been studies that
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34 W. Eberle et al.

suggest that the economy has affected or will affect the surge in cybercrime
(Bush, 2009; Kirk, 2009).

For the past several years, companies have been analyzing their informa-
tion technology operations and processes for the purpose of uncovering in-
sider threats and cybercrime. Most approaches have been either statistical in
nature, leading to various data-mining approaches, or a visualization of their
resources in which they can monitor for illegal access or entry. However, re-
cently, the ability to mine relational data has become important for detecting
structural patterns. The complex nature of heterogeneous data sets, such as
network activity, e-mail, and payroll and employee information, provides for
a rich set of potentially interconnected and related data. Graph-based data-
mining approaches analyze data that can be represented as a graph (i.e.,
vertices and edges). Although there are approaches for using graph-based
data mining for intrusion detection, little work has been done in the area of
graph-based anomaly detection, especially for detecting threats from insiders.

In this article, we present our work in graph-based anomaly detection
for identifying insider threats. After presenting some previous work in graph-
based data mining, we define graph-based anomaly, then briefly present our
algorithms. In three sections (“Experiments on Communication-Based Social
Networks,” “Experiments on Business Process,” and “Experiments on Cy-
bercrime”), we present our approach as applied to several insider threat
scenarios. Next, we evaluate the performance of our algorithms on graphs
of varying sizes and structure. Then, we demonstrate some potential en-
hancements to our algorithms, including the handling of dynamic graphs.
We then conclude with a brief discussion of future work.

PREVIOUS WORK

Much of the information related to insider threats resides in the relations
among the various entities involved in an incident. There has recently been
an impetus toward analyzing multirelational data using graph theoretic meth-
ods. Not to be confused with the mechanisms for analyzing spatial data,
graph-based data-mining approaches are an attempt at analyzing data that
can be represented as a graph (i.e., vertices and edges). Yet, although there
has been much written as it pertains to graph-based intrusion detection
(Staniford-Chen et al., 1996), little research has been accomplished in the
area of graph-based anomaly detection.

In 2003, Noble and Cook used the SUBDUE application to look at the
problem of anomaly detection from both the anomalous substructure and
anomalous subgraph perspective. They were able to provide measurements
of anomalous behavior as it applied to graphs from two different perspec-
tives. Anomalous substructure detection dealt with the unusual substructures
that were found in an entire graph. To distinguish an anomalous substructure
from the other substructures, the researchers created a simple measurement
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Insider Threat Detection 35

whereby the value associated with a substructure indicated a degree of
anomaly. They also presented the idea of anomalous subgraph detection,
which dealt with how anomalous a subgraph (i.e., a substructure that is part
of a larger graph) was to other subgraphs. The idea was that subgraphs that
contained many common substructures were generally less anomalous than
subgraphs that contained few common substructures. In addition, they also
explored the idea of conditional entropy and data regularity using network
intrusion data as well as some artificially created data.

Several approaches use statistical measures to identify individual node
or edge anomalies. Lin and Chalupsky (2003) took the approach of applying
what they called “rarity measurements” to the discovery of unusual links
within a graph. The AutoPart system presented a nonparametric approach to
finding outliers in graph-based data (Chakrabarti, 2004). Part of this approach
was to look for outliers by analyzing how edges that were removed from the
overall structure affected the minimum descriptive length (MDL) of the graph
(Rissanen, 1989). The idea of entropy was used by Shetty and Adibi (2005)
in their analysis of the famous Enron e-mail data set. Using bipartite graphs,
Sun, Qu, Chakrabar, and Faloutsos (2005) presented a model for scoring the
normality of nodes as they relate to other nodes. Rattigan and Jensen (2005)
went after anomalous links using a statistical approach.

In Priebe, Conroy, Marchette, and Park’s (2005) work, they used what
are called “scan statistics” on a graph of the e-mail data that is represented as
a time series. Although their approach detects statistically significant events
(excessive activity), without further analysis, they are unable to determine
whether the events are relevant (such as insider trading). Martin, Nelson,
Sewani, Chen, and Joseph (2005) examined what they called “behavioral
features” of a particular user’s network traffic in order to discover abnormal
activity. Through various clustering approaches, and comparisons to methods
such as support vector machines and naive Bayes classification, they group
sets of users into single behavioral models. Diesner and Carley (2005) applied
various network analytic techniques in their exploration of the structural
properties of the Enron network. They used various graph structural metrics,
such as betweenness centrality, eigenvectors, and total degree in order to
identify key players across time. In 2007, Kurucz, Benczúr, Csalogány, and
Lukács used hierarchical spectral clustering to evaluate weighted call graphs.
They analyzed several heuristic approaches using phone calls made over an
8-month period. However, their purpose was not to expose anomalies in
phone traffic, but instead to address the issues associated with processing
large graphs. In Swayne, Buja, and Temple Lang (2003)’s work, they used
graph techniques to explore AT&T phone records. Although their approach
was able to provide for the analysis of phone traffic, it was entirely based on
graph visualization, rather than on any graph theoretic approaches. In fact,
when it comes to generating graphs of information, much research has dealt
with only the visual aspects of what is represented, rather than the structural
aspects of the graphs themselves.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
b
e
r
l
e
,
 
W
i
l
l
i
a
m
]
 
A
t
:
 
1
5
:
0
3
 
1
0
 
J
a
n
u
a
r
y
 
2
0
1
1



36 W. Eberle et al.

The advantage of graph-based anomaly detection is that the relations
among elements can be analyzed, as opposed to just the data values them-
selves, for structural oddities in what could be a complex, rich set of infor-
mation. Furthermore, our approach identifies the structural context in which
the anomaly occurs rather than just the particular nodes or links that are
anomalous.

GRAPH-BASED ANOMALY DETECTION

Definition

The idea behind the approach used in this work is to find anomalies in
graph-based data in which the anomalous substructure in a graph is part of
(or attached to or missing from) a normative substructure.

Definition: A graph substructure S’ is anomalous if it is not isomorphic to
the graph’s normative substructure S, but is isomorphic to S within X%.

X signifies the percentage of vertices and edges in S’ that would need to
be changed in order for S’ to be isomorphic to S. The importance of this
definition lies in its relation to any deceptive practices that are intended to
illegally obtain or hide information. The United Nations Office on Drugs and
Crime states the first fundamental law of money laundering as “the more
successful money-laundering apparatus is in imitating the patterns and be-
havior of legitimate transactions, the less the likelihood of it being exposed”
(Blum et al., 1998, p. 23).

There are three general categories of anomalies: insertions, modifica-
tions, and deletions. Insertions constitute the presence of unexpected vertices
or edges, modifications consist of unexpected labels on vertices or edges,
and deletions constitute the unexpected absence of vertices or edges.

Approaches

Most anomaly-detection methods use a supervised approach that requires
some sort of baseline of information from which comparisons or training
can be performed. In general, if one has an idea what is normal behavior,
deviations from that behavior could constitute an anomaly. However, the
issue with those approaches is that one has to have the data in advance
in order to train the system, and the data have to already be labeled (e.g.,
normal employee transaction vs. threatening insider activity).

Graph-based anomaly detection (GBAD; Eberle & Holder, 2007) is an
unsupervised approach, based on the SUBDUE graph-based knowledge dis-
covery method (Cook & Holder, 2000). Using a greedy beam search and MDL
heuristic (Rissanen, 1989), each of the three anomaly-detection algorithms
in GBAD uses SUBDUE to discover the best-compressing substructure, or
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Insider Threat Detection 37

normative pattern, in an input graph. In our implementation, the MDL ap-
proach is used to determine the best substructure(s) as the one that minimizes
the following:

M (S, G) = DL(G|S) + DL(S)

where G is the entire graph, S is the substructure, DL(G |S) is the description
length of G after compressing it using S, and DL(S) is the description length of
the substructure. The description length DL(G) of a graph G is the minimum
number of bits necessary to describe the graph G.

We have developed three separate algorithms: GBAD-MDL, GBAD-P,
and GBAD-MPS. Each of these approaches is intended to discover one of
the three possible graph-based anomaly types as set forth earlier. The fol-
lowing is a brief summary of each of the algorithms, along with some simple
examples to help explain their usage. The reader should refer to Eberle and
Holder (2007) for a more detailed description of the actual algorithms.

INFORMATION THEORETIC ALGORITHM (GBAD-MDL)

The GBAD-MDL algorithm uses the MDL heuristic to discover the best com-
pressing (normative) substructure in a graph, and then it subsequently ex-
amines all of the instances of that substructure that “look similar” to that
pattern—or more precisely, are modifications to the normative pattern. In
Noble and Cook (2003)’s work on GBAD, they presented a similarly struc-
tured example (albeit with different labels) to the one shown in Figure 1.

In this example, the normal business process involves Sales sending an
order to the Dispatcher, the Dispatcher verifying the order and sending in
onto the Warehouse, and the Warehouse confirming the fulfillment of the
order with Sales. When applying the GBAD-MDL algorithm to this example,
the circled substructure in Figure 1 is reported as being anomalous. In this
case, there are three entities communicating for each order, but Accounts
is handling the order instead of Sales—going outside the normal process.
With Noble and Cook’s (2003) approach, the “Accounts” vertex would have
correctly been shown to be the anomaly, but the importance of this new
approach is that a larger context is provided regarding its associated sub-
structure. In other words, not only are we providing the anomaly, but we are
also presenting the context of that anomaly within the graph (the individual
anomaly within the instance is in bold).

PROBABILISTIC ALGORITHM (GBAD-P)

The GBAD-P algorithm also uses the MDL evaluation technique to discover
the best compressing (normative) substructure in a graph, but instead of
examining all instances for similarity, this approach examines all extensions
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38 W. Eberle et al.

FIGURE 1 GBAD-MDL example with anomalous instance circled.

(or insertions) to the normative substructure with the lowest probability. The
difference between the algorithms is that GBAD-MDL is looking at instances
of substructures with the same characteristics (e.g., size), whereas GBAD-
P is examining the probability of extensions to the normative pattern to
determine whether there is an instance that includes edges and vertices that
are probabilistically less likely than other possible extensions. Taking the
business process example again, Figure 2 shows the process flow between
a warehouse (W), dispatcher (D), accounting (A) and the customer (C).

In this example, the normal process involves a communication chain
between Sales, Warehouse, and Dispatcher, with the order confirmation be-
ing conveyed by the Dispatcher to the Customer. After the first iteration of
the GBAD-P algorithm, the boxed instance in Figure 2 is one of the instances
of the normative substructure. Then, on the second iteration, extensions are
evaluated, and the circled instance is the resulting anomalous substructure.
In this example, the Dispatcher is communicating with Accounts when it
should have been the Customer. Again, the edge and vertex (shown in bold)
are labeled as the actual anomaly, but the entire anomalous substructure is
output to provide additional context for possible analysis.
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Insider Threat Detection 39

FIGURE 2 GBAD-P example with instance of normative pattern boxed and anomaly circled.

MAXIMUM PARTIAL SUBSTRUCTURE ALGORITHM (GBAD-MPS)

The GBAD-MPS algorithm again uses the MDL approach to discover the best
compressing (normative) substructure in a graph, then it examines all of the
instances of parent (or ancestral) substructures that are missing various edges
and vertices (i.e., deletions). The value associated with the parent instances
represents the cost of transformation (i.e., how much change would have to
take place for the instance to match the normative substructure). Thus, the
instance with the lowest cost transformation is considered the anomaly, as it
is closest (maximum) to the normative substructure without being included
on the normative substructure’s instance list. If more than one instance has
the same value, the frequency of the instance’s structure will be used to
break the tie if possible. Consider the slightly more complex graph of a
business process, involving multiple transactions that are linked together by
common entities, as shown in Figure 3.

In this example, the normative pattern in the process is a Sales person
communicating with the Warehouse and a Customer, and the Warehouse
corresponding with a Dispatcher. Suppose we take one of the instances
of the normative pattern (shown in the box), and remove an edge and its
associated vertex (shown in the circle). When applying GBAD-MPS to that
modified graph, an anomalous substructure, similar to the normative pattern,
is discovered, where the Customer entity is missing along with the “note”
link from Sales.

EXPERIMENTS ON COMMUNICATION-BASED SOCIAL NETWORKS

Social networks consist of nodes representing individuals and edges
representing various relationships (e.g., friendship) between individuals.
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40 W. Eberle et al.

FIGURE 3 GBAD-MPS example with instance of normative pattern boxed and anomaly cir-
cled.

Discovering patterns and anomalies in social networks is of particular in-
terest. Here, we focus on social networks where the relationship links repre-
sent communication between individuals. One communication-based social
network that has garnered much interest is based on e-mail traffic. As The
New York Times reported, it “. . . is a potential treasure trove for investiga-
tors monitoring suspected terrorists and other criminals. . .” (Kolata, 2005, p.
1). Until recently, researchers have struggled with being able to obtain cor-
porate e-mail because of the obvious restrictions placed on releasing what
could be sensitive information. However, with the Federal Energy Regulatory
Commission publication of the e-mail associated with the infamous Enron
Corporation, researchers now have access to a rich data set of correspon-
dences between management, lawyers, and traders, many of whom were
directly involved in the scandal.

Another domain that has been the subject of data-mining activities in-
volves the analysis of phone calls. Organizations such as the National Security
Agency have spent the past several years collecting suspicious phone calls
and storing them in a database (Cauley, 2006). The significance of being able
to peruse phone call information lies in the fact that an analyst can see who
called whom, when they talked, for how long they talked, and the location
of both parties. In the case of cell phone calls, one can also ascertain the
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Insider Threat Detection 41

FIGURE 4 Graph substructure of e-mail data set.

specific global position of two entities. Such information has been useful
to not only general data mining research, but more specifically, research
in diverse areas such as marketing, terrorist monitoring, and social network
analysis.

The following sections explore the detection of anomalies in the social
networks that can be found in both e-mail communications and cell phone
traffic.

E-mail Communications

One of the more recent domains that have become publicly available is the
data set of e-mails between employees from the Enron Corporation. The
Enron e-mail data set consists of not only messages, but also employee
information such as their full name and work title. By limiting our graph
to the Enron employees and their correspondences, we are able to not
only create a social network, but also discover anomalous behaviors among
classes of individuals (Eberle & Holder, 2009a). Thus, we generated graphs
on the basis of the social aspect and company position of employees that
start a chain of e-mails, in which a chain consists of the originating e-mail
and any subsequent replies or forwards to that corresponding e-mail. Each
graph consists of the substructures shown in Figure 4.
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FIGURE 5 Anomalous instance (portion) of e-mail being forwarded.

In this representation, a graph consists of individual, disconnected sub-
structures that represent the flow of each e-mail that originates from someone
with a specified employment title (e.g., Director). An e-mail can be sent by
one or more TRANSFERs, from a SENDER (and their corresponding TITLE),
to a RECEIVER (with the TITLE of the e-mail), and can either be sent back (as
a reply or forward, called a STATE), with a unique message identifier (called
a MID), or forwarded/replied on to other entities (via a specific METHOD).
There is no limit to the number of times a message can be replied/forwarded.

There are many different employee titles within Enron (i.e., managers,
directors, chief executive officers), and each of the GBAD algorithms were
able to show different structural anomalies in the chains of e-mails that
originated along people’s company titles. For instance, running GBAD on
the graph that consists of e-mails originating from Directors, the anomalous
instance shown in Figure 5, visualized using the GraphViz tool (GraphViz),
is discovered.

This anomalous instance consists of a message being sent from a director
to an employee (i.e., nonmanagement personnel), that was then forwarded to
another nonmanagement employee. What is interesting about this anomaly
is that the data set consists of many e-mails that are sent to employees from
directors, but this is the only situation in which the employee FORWARDed
the e-mail on to another employee who was not privy to the original e-mail.
Specifically, the e-mail started with Hyatt (director) regarding “Oasis Dairy
Farms Judgement,” who sent it to Watson (employee), which the employee
forwarded to Blair (employee).

Although applying GBAD-MPS and GBAD-P to the graph of e-mails
originating from personnel with the title of “trader” does not produce any
significant anomalies, the GBAD-MDL algorithm does produce two anoma-
lous instances. Figure 6 shows two situations in which a Trader was involved
in a chain of e-mails that resulted in correspondences to a chief executive
officer and a president, respectively, that were not normal.

In terms of the first anomalous instance, shown in Figure 6, from an
e-mail titled “Financial Disclosure of $1.2 Billion Equity Adjustment,” there
are only four e-mails that are sent to chief executive officers. However, this
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Insider Threat Detection 43

FIGURE 6 Anomalous instances of e-mails to a chief executive officer and to a president.

is the only example of an e-mail being sent to a chief executive officer; the
other three e-mails are carbon copied. In the case of the second anomalous
instance shown in Figure 6, an e-mail titled “Fastow Rumor,” this is the only
time that an e-mail is sent by a trader to a president.

Cell Phone Traffic

As part of the 2008 IEEE Symposium on Visual Analytics Science and Tech-
nology (2008), we decided to apply our approaches to one of the mini chal-
lenges that deals with cell phone traffic (Eberle & Holder, 2008). Although
the goal of the challenge is to target new visual analytics approaches, it is
still possible to apply these graph-based anomaly-detection algorithms to the
same data sets. One of the data sets consists of cell phone traffic between
inhabitants of the fictitious island of Isla Del Sueño. The data consist of 9,834
cell phone calls between 400 people over a 10-day period. The challenge is
to describe the social network of a religious group headed by Ferdinando
Cattalano and how it changes over 10 days. A graph of the general structure
of this cell phone traffic is represented as shown in Figure 7.

FIGURE 7 Graph of a cell phone call from the Visual Analytics Science and Technology data
set.
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FIGURE 8 Ferdinando/Catalano’s social structure with associated normative pattern and
anomalies.

To answer the challenge, we focused on the social interactions by cre-
ating a graph of the social network that indicated for a particular day, who
called whom. On the basis of all of the information that was provided with
the challenge, we made the following assumptions about this particular data
set:

• The person with an ID of 200 is Ferdinando Catalano.
• Anyone who Ferdinando Catalano calls (or who calls him) is in his “inner

circle.”
• The person with an ID of 5 is Estaban Catalano, Ferdinando’s brother,

because he is called the most.
• The person with an ID of 1 is David Vidro, because he talks the most with

the others with whom Ferdinando talks.

Starting with these simple assumptions, and a graph that consisted of vertices
for each unique ID with links between the vertices if there was a conversation
on that day, we were able to create a simple visualization of Ferdinando’s
inner circle social network structure (or Catalano/Vidro social structure) over
the 10 days that data were generated.

Figure 8 was rendered using AT&T’s graph visualization program,
GraphViz. This visualization shows the graph structure of interactions be-
tween people in 200’s (i.e., Ferdinando Catalano’s) inner circle (i.e., 200,
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Insider Threat Detection 45

1, 2, 3, 5, 97, and 137), the normative pattern within the graph, and the
anomalous patterns in terms of the normative pattern.

In Figure 8, the substructure in the upper right shows the normative
pattern that was discovered in this graph. The substructure consisting of an
edge to the vertex labeled “96” is the anomaly that was discovered by the
GBAD-P algorithm, which analyzes a graph for anomalous extensions to the
normative pattern. In this case, the fact that 5 called 97 was anomalous,
compared with other instances of what was the normal social structure. The
third substructure from the right across the top is the anomaly that was
discovered by the GBAD-MPS algorithm, which analyzes a graph for missing
structure. In this case, the fact that 200 did not talk to 3 on that day is
considered anomalous.

Looking at the visualization shown in Figure 8 of the Catalano/Vidro
calling history, we are able to make several interesting observations about
his social network:

• There are only nine substructures in the graph. This is because on Day 8,
nobody in 200’s inner circle talked to each other. In other words, there
were no calls among 1, 2, 3, 5, 97, 137, or 200 on that day.

• Catalano/Vidro’s “normative” social pattern only occurs on Days 1, 2, 4, 5,
and 7.

• Nobody from the “normative inner circle” (i.e., 1, 2, 3, 5, and 200), com-
municates with anyone else in the normative circle after Day 7. Could it
be that Ferdinando sent them to the United States at this point?

• 200 communicates with both 97 and 137 on Day 9, and just 97 on Day 10.
• 200 is involved in an inner circle conversation on every day (except Day

8).

We also played with several other variants of the graph, including the
“directedness” of the graph. Although we chose an undirected graph for
all of the previously shown results (because we considered a conversation
between two people to be a two-way communication), we also looked at a
directed version of the graph, in which the edge between two vertices was
directed going from the person who called to the person who was being
called. When we did that, we noticed that 97 and 137 are never called by 1,
2, 3, and 5—and they only call 5 and 200.

EXPERIMENTS ON BUSINESS PROCESSES

For years, companies have been analyzing their business processes for the
purposes of streamlining operations, discovering wasteful overhead, over-
coming inefficiencies in production, and so forth. However, there have also
been several efforts applied toward analyzing business processes for fraud
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FIGURE 9 Depiction of an order fulfillment process; circled edge indicates a low-probability
anomaly.

detection, which has led to an increase in pertinent data-mining activity.
Most of these approaches have dealt with the visualization of business pro-
cesses, such as VisImpact (Hao, Keim, Dayal, & Schneidewind, 2006). Some
approaches have used data/audit logs that are collected by a company in or-
der to generate fraud alerts in near real time. Although there are approaches
for using graph-based data mining on domains such as intrusion detection
(Staniford-Chen et al., 1996), little work has been done in the area of GBAD,
especially for application to business processes, such as in document control
and management systems.

To perform a systematic evaluation of the GBAD approach for iden-
tifying anomalies, or insider threats, in business transactions or processes,
we used the OMNeT++ discrete event simulator to model transactions and
processes, generate transaction and process data, represent the data in graph
form, and then analyze the graphs using GBAD (Eberle & Holder, 2009b).
This process has two main benefits. First, we can model many different
types of transactions with known structure and known anomalies, which
allows us to easily verify GBAD’s ability to detect these anomalies. Second,
the OMNeT++ framework can be used to model real business processes to
further evaluate the real-world applicability of the GBAD approach. Here,
we give a brief introduction of this process on a simple business transac-
tion example, followed by a more complex example representing a known
business process.

Order Processing

Consider the order-fulfillment process depicted in Figure 9. The process
is initiated by the Customer placing an Order, which is sent to the Sales
department. The Sales department sends an Order Acknowledgement back
to the Customer and sends an Internal Order to the Warehouse. Once the
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FIGURE 10 Partial OMNeT++ simulation output.

Warehouse ships the order, they send a Delivery Note to the Customer. One
possible anomaly in this process is when someone in the Sales department
copies the Order to an Unknown entity, perhaps to leak insider information
to a competitor about the order.

We first define the structure of this network using OMNeT++’s Net-
work Description Language and then define the flow of information within
C++ modules for each node. After receiving an Order message, the Sales
module waits 10–60 seconds and then sends an Order Acknowledgement
message to the Customer module, sends an Internal Order message to the
Warehouse module, and with a Bernoulli probability of 0.001 (as defined in
the omnetpp.ini file) sends an Order message to the Unknown module.

Figure 10 shows a portion of the output from the order fulfillment sim-
ulation. In addition to the logging information produced by OMNeT++, the
figure also shows the GBAD-related messages printed from each module
describing order-related messages as they are sent and received by the mod-
ules. We use this information to construct graphs of the ordering process.

For the experiment depicted in Figure 9, representing the processing
flow of 1,000 orders, we generated a graph of approximately 3,000 vertices
and 4,000 edges. From this graph, GBAD is able to successfully discover,
with no false positives, the known anomaly shown with dotted lines and a
larger font in Figure 11, alongside two other nonanomalous instances of the
normative pattern.

Passport Applications

Another type of process for which we have applied our approaches, mo-
tivated by two real-world sources of information, deals with document
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FIGURE 11 Subdue-formatted (partial) graph produced from GBAD-enhanced OMNeT++
simulation output.

processing (Eberle & Holder, 2009b). One source is the incidents reported
in the CERT Insider Threat documents (Kowalski, 2008a, 2008b; Moore, Ran-
dazzo, Keeney, & Cappelli, 2004) that involve privacy violations in a govern-
ment identification card processing organization and fraud in an insurance
claim processing organization. Another source, for which our model directly
simulates, is based on the process flow associated with a passport applica-
tion (Chun, 2008). The outline of this process flow, depicted in Figure 12, is
as follows:

1. The applicant submits a request to the frontline staff of the organization.
2. The frontline staff creates a case in the organization’s database and then

submits the case to the approval officer.

FIGURE 12 Passport application process.
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3. The approval officer reviews the case in the database and then assigns the
case to one of the case officers. By default, there are three case officers in
the organization.

4. The assigned case officer reviews the case and may request additional
information from the applicant, which is submitted to the frontline staff
and then forwarded to the assigned case officer. The assigned case officer
updates the case in the database on the basis of this new information.
The assigned case officer may also discuss the case with one or more of
the other case officers, who may review and comment on the case in the
database. Ultimately, the assigned case officer will recommend to accept
or reject the case. This recommendation is recorded in the database and
sent to the approval officer.

5. Upon receiving the recommendation from the assigned case officer, the
approval officer will make a final decision to accept or reject the case.
This decision is recorded in the database and sent to both the frontline
staff and the applicant.

6. Last, upon receiving the final decision, the frontline staff archives the case
in the database.

There are several scenarios in which potential insider threat anomalies might
occur, including the following:

1. Frontline staff performing a review case on the database (e.g., invasion of
privacy).

2. Frontline staff submits case directly to a case officer (bypassing the ap-
proval officer).

3. Frontline staff recommends or decides case.
4. Approval officer overrides accept/reject recommendation from assigned

case officer.
5. Unassigned case officer updates or recommends case.
6. Applicant communicates with the approval officer or a case officer.
7. Unassigned case officer communicates with applicant.
8. Database access from an external source or after hours.

Representing the processing of 1,000 passport applications, we generated a
graph of approximately 5,000 vertices and 13,000 edges, and proceeded to
replicate some of the insider threat scenarios described earlier.

First, we randomly inserted an example that represents Scenario 1. Al-
though the GBAD-MDL and GBAD-MPS algorithms do not discover any
anomalous structures, GBAD-P is able to successfully discover the only
anomalous case out of 1,000 in which a frontline staffer was performing
a review of a case—a clear violation of their duties. Figure 13 shows the nor-
mative pattern and the anomalous edge “ReviewCase” between the “Front-
lineStaff” node and the “Database” node.
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FIGURE 13 Scenario 1 normative pattern and anomaly.

The actual anomaly in Figure 13 is shown with a bolded edge and larger
label font. Also, although not shown here, this same structural anomaly can
be found in Scenarios 3 and 6. Scenario 3 consists of an extra edge (“Recom-
mendAcceptCase”) going from the “FrontlineStaff” node to the “Database”
node, and as such is only different from Scenario 1 by the label on the edge.
Scenario 6 consists of an extra edge between the “Applicant” node and the
“ApprovalOfficer” (or “CaseOfficer”) node, which is structurally identical to
the other two scenarios—an unexpected edge between two expected ver-
tices.

For Scenario 2, we randomly inserted three examples where a front-
line staffer submitted a case directly to a case officer, instead of sending it
to the approval officer. In this case, GBAD-P and GBAD-MDL do not un-
cover any anomalous structures, whereas GBAD-MPS is able to successfully
discover all three instances where the frontline staffer did not submit the
case to the approval officer. Figure 14 shows the normative pattern and
the missing “SubmitCase” edge between “FrontlineStaff” and “ApprovalOffi-
cer,” the missing second “ReviewCase” edge between “ApprovalOfficer” and
“Database,” and the missing “AssignCase” edge between “ApprovalOfficer”
and “CaseOfficer.”

The actual anomalies in Figure 14 are shown with a larger label font
and a dashed edge, indicating their absence from the graph.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
b
e
r
l
e
,
 
W
i
l
l
i
a
m
]
 
A
t
:
 
1
5
:
0
3
 
1
0
 
J
a
n
u
a
r
y
 
2
0
1
1



Insider Threat Detection 51

FIGURE 14 Graph of Scenario 2, showing the normative pattern and missing edges.

For Scenario 4, we randomly modified three examples by changing the
recommendation that the “CaseOfficer” sends to the “ApprovalOfficer.” In
one example, the “CaseOfficer” recommends to accept the case, and the rec-
ommendation from the “ApprovalOfficer” is changed to rejecting the case,
and in the other two examples the reverse is implemented. For this example,
GBAD-MDL and GBAD-MPS do not find any anomalies, and GBAD-P only
discovers one of the anomalous examples (in which the “CaseOfficer” rec-
ommends to reject the case but the “ApprovalOfficer” decides to accept the
case. Figure 15 shows the normative pattern and the anomalous structures
from this example.

When we have GBAD report on the top two most anomalous substruc-
tures, instances of that type (reject changed to accept) are discovered, but
we are still missing the first anomalous example (accept changed to reject).
The issue is that we are dealing with multiple normative patterns (i.e., mul-
tiple substructures that can be considered normative in the entire graph.)
In this case, there are two basic normative patterns—one in which the “Ap-
provalOfficer” and “CaseOfficer” both accept a case, and one in which the
“ApprovalOfficer” and “CaseOfficer” both reject a case. However, when we
modified the GBAD-P algorithm to analyze the top N normative patterns,
both of the examples in which the “CaseOfficer” recommends rejecting the
case but the “ApprovalOfficer” accepts the case, are reported as the most
anomalous examples, and the next most anomalous instance reported is the
other anomalous example. Also, no other substructures were reported as
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FIGURE 15 Graph of Scenario 4, showing the normative pattern and unexpected edge labels.

anomalous along with these top three anomalies (i.e., no false positives).
This highlights a general issue with GBAD in regards to finding anomalies
when multiple normative patterns exist in the graph. We discuss this issue
in more detail in the “Discovering Anomalies to Multiple Normative Patterns
in Structural and Numeric Data” section.

For Scenario 5, we randomly inserted into two examples the situa-
tion in which a “CaseOfficer” recommends to accept a case for which
they were not assigned. In this scenario, GBAD-MDL does not report any
anomalies, while both GBAD-MPS and GBAD-P each discover both anoma-
lous instances. GBAD-MPS discovers the anomalies because the “CaseOffi-
cer” has assigned himself to the case without any corresponding recommen-
dation back to the “ApprovalOfficer” or “Database,” while GBAD-P uncovers
the extra “CaseOfficer” and his unauthorized assignment to the case. Figure
16 shows the normative pattern and the anomalous structures from one of
these examples. Also, although not shown, this same structural anomaly can
be found in Scenario 7. Scenario 7 consists of an extra edge going from the
unauthorized “CaseOfficer” node to the “Customer” node and, as such, it is
only different from Scenario 5 by the label on the edge and the targeted
node.

The added aspect of time, found in Scenario 8, involves the analysis
of numerical attributes and how to incorporate them into the graph struc-
ture. This will be discussed further in the “Discovering Anomalies to Multiple
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FIGURE 16 Scenario 5, unauthorized handling of a case.

Normative Patterns in Structural and Numeric Data” section, when we incor-
porate numerical analysis with the structural analysis.

EXPERIMENTS ON CYBERCRIME

An example of cybercrime is the leaking of information by employees with
access to confidential and sensitive information. As part of the 2009 IEEE
Symposium on Visual Analytics Science and Technology (2009), we again
applied our approaches to one of their mini challenges. Whereas the 2008
challenge mentioned earlier focused on cell phone traffic, each of the 2009
mini challenges consists of various aspects of a fictional insider threat, based
upon the leaking of information. The goal of these challenges is to allow
contestants to apply various visual analysis techniques so as to discover the
spy and their associated actions.

Again, although our GBAD approaches are not visually based, we chose
to apply our algorithms to the mini challenge that consists of badge and
network internet protocol (IP) traffic. The data set comprises employee badge
swipes during the month of January in 2008, and the IP log consists of
all network activity to and from the facility. One of the goals of this mini
challenge was to determine which computers the “spy” used to send the
sensitive information.

We can separate the cybercrime discovery process into three separate
tasks:
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1. Discover the anomalous network activity.
2. Create targeted graphs for just those days and people that might be in-

volved in the anomalous activity.
3. Use GBAD to discover which employees participate in anomalous activity.

The first stage of this process is to discover the network activity that is
unusual—or the source of illegal transmissions. Rather than apply a graph-
based approach to the discovery of what would be numerical/statistical
anomalies (i.e., nonstructural anomalies), we can do a simple analysis of the
actual records. Sorting the IP logs by amount of traffic, one discovers that
the top five transmissions are all to the same destination IP, 100.59.151.133,
on port 8080:

Synthetic Data 37.170.100.31 2008-01-15T17:03 100.59.151.133 8080 9513313 14324
Synthetic Data 37.170.100.20 2008-01-24T17:07 100.59.151.133 8080 9732417 42347
Synthetic Data 37.170.100.13 2008-01-22T08:50 100.59.151.133 8080 9984318 42231
Synthetic Data 37.170.100.56 2008-01-29T15:41 100.59.151.133 8080 10024754 29565
Synthetic Data 37.170.100.8 2008-01-31T16:02 100.59.151.133 8080 13687307 485421

In the IP log file, the first column is the type of data, the second column
is the source IP, the third column is the date and time, the fourth column is
the destination IP, the fifth column is the destination port, the sixth column is
the size of the transmission, and the final column is the size of the response
record. In fact, 17 of the 32 highest transmission records have this same
destination IP—clearly an unusual volume of traffic to a single, external
destination. In addition, with our graph-based approach, we can verify the
anomalousness of the traffic upon the basis of the relation of the activity
within the graph. For example, knowing that Employee 31’s computer is
one of the computers that sent the supposedly illegal transmissions (see the
top record), we can analyze the subgraph of that employee’s activity on that
day.

To discover an insider committing this form of cybercrime, we make
two reasonable assumptions:

1. The insider never uses his or her own computer (for fear of his or her
actions being traced back to him or her).

2. The insider only uses the victim’s computer when that victim is in the
classified area (because that is the only time the insider knows that the
victim is not in his or her office).

Using these two assumptions, we can then focus on the generation of graphs
that (a) exclude people whose computer was compromised from being con-
sidered as suspects and (b) reduce the graph search space to only those days
on which the illicit transmissions took place. In this data set, 10 employees

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
b
e
r
l
e
,
 
W
i
l
l
i
a
m
]
 
A
t
:
 
1
5
:
0
3
 
1
0
 
J
a
n
u
a
r
y
 
2
0
1
1



Insider Threat Detection 55

FIGURE 17 7 Graph topological representation.

are removed from being considered as suspects, and only the activity of
other employees during the anomalous network activity are represented in
the graph. This will enable us to analyze abnormal structure in the graph
during the times of the crimes.

First, we create graphs consisting of subgraphs that represent employee
movements for each targeted day (i.e., the days when the illicit transmis-
sions took place), as well as graphs that represent the movements for each
employee over all of the targeted days. Each subgraph will contain a “back-
bone” of movement vertices. Attached to the movement vertices will be two
vertices representing where the person was before entering the current lo-
cation and the current location (i.e., outside, building, classified). The edges
will be labeled start and end, respectively. Then, if network traffic is sent
before the person moves again, a network vertex will be created and linked
to the movement vertex via a sends edge. The network vertex will also be
linked to a vertex with a numerical label, representing how many messages
are sent before the next movement occurs. The result is a graph topological
representation as shown in Figure 17.

In the partial example shown in Figure 18, a person enters from the
outside, transfers some data across the network, and then moves into the
classified area.

We created a tool to process the comma-delimited proxy log and IP log
files and output graph files for use with GBAD. Once the graph files are
created, GBAD can then be used to obtain the normative pattern discovered
in the specified graph input file and the top-N most anomalous patterns.

Using this graph representation, GBAD discovers the normative pattern
shown in Figure 19.
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FIGURE 18 Example movement and activity (partial graph shown).

After uncovering the normative pattern, GBAD can then use its three
algorithms to discover all of the possible structural changes that can exist in
a graph (i.e., modification, deletions, and insertions).

The Visual Analytics Science and Technology data set consists of the
activities of 60 employees at an embassy during January 2008. As stated
earlier, there are 17 transmissions to the suspect IP. On the basis of our
first assumption, we can remove 10 employees from the list of suspects
(some employees’ computers were compromised more than once). We can
also reduce our data set down to just the days on which the anomalous
transmissions took place, which consists of 8 of the 31 available days worth
of information. This subset of the data is then the baseline for our GBAD
analysis.

Using these targeted graphs (8 day graphs and 50 people graphs), we
ran the GBAD algorithms using default parameter settings, where it would

FIGURE 19 Normative pattern.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
b
e
r
l
e
,
 
W
i
l
l
i
a
m
]
 
A
t
:
 
1
5
:
0
3
 
1
0
 
J
a
n
u
a
r
y
 
2
0
1
1



Insider Threat Detection 57

FIGURE 20 Anomalous structure (in the graph).

report only the most anomalous instances, rather than the top-K instances.
On the graphs that represent individual people and their movements and
network activities across all targeted days, the GBAD-MDL algorithm discov-
ers 12 employees as having anomalous movements and activities, and the
GBAD-MPS algorithm reports 8 employees as anomalous. On the graphs that
represent all movements and activities for each targeted day, GBAD-MDL re-
ports 6 employees as anomalous while GBAD-MPS reports two employees.
However, there is an interesting commonality across all four experiments. If
you take the overlap (intersection) between them, in other words which em-
ployees are reported in all of the experiments, one discovers that there are
only two employees that are very suspicious: Employee 49 and Employee
30.

We can further distinguish a difference between these two employees by
analyzing the graphs and GBAD results. From the GBAD results, Employee
30 is reported as the most anomalous (scorewise) on 6 of the 8 days, with
Employee 49 being the most anomalous on the other 2. Also, Employee 30
is the only employee with the structural anomaly shown in Figure 20.

In Figure 20 (only the parts of the graph necessary for this observation
are shown), one will notice that the employee initially moves from the
outside into the building. However, their next move is from the classified
area into the building—with no movement into the classified area before
that. This is called piggybacking, in which an employee does not use his or
her badge but instead follows on the heels of another employee. Yet, while
employee 30 is not the only employee to piggyback into the classified area,
he or she does it several times. Perhaps his or her intent is to gather classified
information without a trace of ever entering the area. Unfortunately (for him
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or her), he or she had to badge-out of the area—resulting in a structural
anomaly in their movement.

It should also be noted that the GBAD-P algorithm does not report
any significant movement or activities as anomalous, but it does report the
differences in network traffic sizes. In addition, it is interesting to note that
all of the anomalous activity takes place on Tuesdays or Thursdays. Future
work in anomaly detection could detect structural patterns in the anomalies
themselves.

PERFORMANCE

Of course, the ability to discover anomalies is critical to the success of any
anomaly-detection system. However, to be useful as a real-world application,
the performance of the algorithms must be viable for real-time analysis.

In previous work (Eberle & Holder, 2007), we demonstrated the ac-
curacy of GBAD on real-world and synthetic graphs of varying sizes and
density (number of vertices and edges). Recently, we conducted various
experiments with GBAD to identify areas for further performance enhance-
ments in regards to scalability by examining the relation between accuracy
and efficiency as it relates to the graph topology. These efforts have focused
on identifying the performance of GBAD in terms of the following:

1. Measuring the effects on accuracy and efficiency as a function of the size
of the input graph.

2. Measuring the effects on accuracy and efficiency as a function of the size
of the normative pattern.

For the first set of experiments, we tested various graph input sizes
(number of vertices). As an example of our results, Figure 21 shows a log-
log plot of the running time of GBAD as a function of the graph size where
the normative pattern has 10 vertices and 9 edges. Here, we see that all three
versions of GBAD run in time polynomial (degree just below 2.0) in the graph
size. This particular plot is for disconnected graphs, in which each instance
of the normative pattern appears in a separate graph and some instances are
randomly selected for the introduction of an anomaly (insertion, deletion, or
modification). In these experiments, all anomalies are found with no false
positives.

Figure 22 shows a similar plot for connected graphs; that is, all instances
of the normative pattern appear in one connected graph. Here, again we see
that all three versions of GBAD run in time polynomial in the number of
vertices in the graph. Although all anomalies are found, there were some
false positives found in the smaller graphs (3 at size 100, 2 at size 200, and 2
at size 400). The main reason for this is that fewer random edges are needed
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FIGURE 21 GBAD running time as a function of graph size (number of vertices) for discon-
nected graphs. This log-log plot shows that GBAD scales polynomial with graph size.

to connect the smaller graphs, and therefore, these edges appear anomalous.
As the graph grows in size, the random edges appear with more frequency
than the anomalous edges and therefore appear less anomalous. Overall,
these results show that GBAD scales well with graph size in both efficiency

FIGURE 22 GBAD running time as a function of graph size (number of vertices) for con-
nected graphs. This log-log plot shows that GBAD scales polynomial with graph size.
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and accuracy, as GBAD’s running time is low-degree polynomial in the size
of the input graph.

We then evaluated GBAD’s performance as the size of the normative
pattern increases. We initially identified performance bottlenecks. For ex-
ample, when GBAD looked for anomalies that were small modifications to
the normative pattern, after finding the normative pattern, GBAD had to
find close matches to the pattern (e.g., a graph with a vertex or edge label
changed). As the normative pattern’s size increased, finding close matches
became increasingly costly in both memory and running time. The bottle-
neck was basically due to the graph isomorphism test being performed on
subgraphs of the normative pattern as GBAD expanded these subgraphs to
become the same size as the normative pattern, yet they were potentially
anomalous. In response to this, we enhanced the GBAD algorithms with a
more constrained matching technique that takes advantage of the fact that
a large portion of the normative pattern and potential anomaly will match
exactly, and that the graph matching process should not try to undo this por-
tion of the match. Adding this constraint alone results in a ∼40% speedup in
running time.

For the second set of experiments, we analyzed GBAD’s performance
as it relates to both the size of the input graph and the size of the normative
pattern. Before the enhancement, we noted a sharp increase in runtime as
the size of the normative pattern reached a certain percentage size of the
input graph. However, by implementing the enhancement described earlier,
we are able to alleviate the increased runtime, in many cases achieving two
orders of magnitude speedup over the previous version, without sacrificing
accuracy. For example, Table 1 shows results for increasing sizes of norma-
tive patterns for an input graph of size 1700 vertices. In this table, we see
significant improvement at higher normative pattern sizes for modification-
based anomalies (anomalies that are the same size as the normative pattern,
but with a small difference). In the case of the 40 vertex normative pattern,
the enhancement allowed GBAD to complete where it had not been able to
previously. This enhancement has also allowed processing of graphs up to
60,000 vertices in less than 5 min.

However, there is still room for improvement. Figure 23 shows the run-
ning time of GBAD with increasing input graph size for sparse graphs. The
log-log plot indicates an approximately quadratic order of growth. Experi-
ments on dense graphs show an even higher order of growth. Most of this
time is spent finding the normative patterns, which is currently done using
the SUBDUE graph-based knowledge discovery approach (Cook & Holder,
1998). SUBDUE has several parameters that limit the amount of computation
(search) that is performed, and we are exploring better settings for these
parameters that reduce running time, but still find the correct normative
pattern. Another approach would be to use a frequent subgraph discovery
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TABLE 1 Results for Different Normative Pattern Sizes for Each Anomaly Type on an Input
Graph of 1700 Vertices

Size of Found False CPU seconds CPU seconds
normative Anomalous all False (before (after
pattern type anomalies? positives? enhancement) enhancement)

3v/2e Deletion Yes No 0.05
Insertion Yes No 0.05
Modification Yes No 0.05

5v/4e Deletion Yes No 0.12
Insertion Yes No 0.13
Modification Yes No 0.11

10v/9e Deletion Yes No 0.17
Insertion Yes No 0.27
Modification Yes No 0.57 0.22

20v/19e Deletion Yes No 0.36
Insertion Yes No 0.64
Modification Yes No 1346.26 0.37

40v/39e Deletion Yes No 6.27
Insertion Yes No 1.45
Modification Yes No (process killed after

a few days)
6.78

algorithm, such as FSG (Kuramochi & Karypis, 2004) or gSpan (Yan & Han,
2002), which tend to be more efficient than SUBDUE, given that they search
for frequent subgraphs; whereas, SUBDUE searches for highly compressing
subgraphs.

FIGURE 23 GBAD running time with increasing input graph size.
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FIGURE 24 GBAD running time with increasing normative pattern size on a sparse graph
with 60,000 vertices.

On a more positive note, results of GBAD on a fixed-size sparse graph
with an increasing-sized normative pattern show fairly constant running
times. Figure 24 shows the running time of GBAD on a sparse graph of
60,000 vertices as the size of the normative pattern increases. In sparse
graphs, GBAD’s running time is less influenced by the size of the norma-
tive pattern, and most domains of interest to the insider threat problem
are sparse. However, when the graph is dense, the size of the normative
pattern does affect the running time of GBAD. Figure 25 shows GBAD’s
running time on a denser graph with 53,900 vertices as the size of the nor-
mative pattern increases. Here, we see that larger normative patterns do
increase the running time in a dense graph. These results again indicate
that a reduction in the time to find the normative pattern can result in a
significant reduction in GBAD’s overall running time. We are continuing to
investigate approaches to reduce the complexity of this phase of GBAD’s
processing.

DISCOVERING ANOMALIES TO MULTIPLE NORMATIVE PATTERNS
IN STRUCTURAL AND NUMERIC DATA

One of the primary issues with traditional anomaly-detection approaches is
their inability to handle complex, structural data. The advantage of GBAD
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FIGURE 25 GBAD running time with increasing normative pattern size on a dense graph
with 53,900 vertices.

is that the relations among elements can be analyzed, as opposed to just
the data values themselves, for structural oddities in what could be a com-
plex, rich set of information. However, until now, attempts at applying
graph-based approaches to anomaly detection have encountered two issues:
(a) numeric values found in the data are not incorporated into the analysis
of the structure, which could augment and improve the discovery of anoma-
lies; and (b) the anomalous substructure may not be a deviation of the
most normative pattern, but deviates from one of many normative patterns.
The following proposes enhancements to existing graph-based anomaly-
detection techniques that address these two issues and shows experimental
results validating the usefulness of these enhancements.

Multiple Normative Patterns

One of the issues with this approach is that many data sets, when represented
as a graph, consist of multiple normative patterns. For example, a graph
of telephone calls across multiple customers or service providers contain
different calling patterns. The normative “behavior” of one customer would
not be representative of another customer’s calling pattern. For this reason,
most telecommunications’ fraud-detection systems use a profiling system to
distinguish between different customer calling patterns (Cortes & Pregibon,
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64 W. Eberle et al.

FIGURE 26 Example of multiple normative patterns.

2001). However, the issue with these sorts of traditional systems is that they
are a type of supervised approach because they require a profile of the
customer before they can detect anomalies.

The GBAD approach is unsupervised, discovering substructures that are
the smallest deviations from the normative pattern (i.e., the substructure that
best compresses the graph). However, if we extend GBAD to consider the
top N normative substructures, we can then discover other deviations that
are potentially more anomalous. This results in the following change to the
first step of each of the GBAD algorithms:

Find the N normative substructures Si that have the N smallest values for
DL(Si)+DL(G |Si).

where N normative patterns are initially discovered, against which potentially
anomalous instances are analyzed.

For example, suppose we have the graph in Figure 26.
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Insider Threat Detection 65

FIGURE 27 Depiction of application processing.

In Figure 26, the best normative pattern consists of the substructure
outlined in the big box. Then, using that normative pattern, GBAD would
report the two anomalous substructures shown in the small boxes. However
there is another normative pattern that is the second best substructure in
the graph, shown outlined with an ellipse (in bold). From that normative
pattern, a more anomalous substructure is discovered (shown in a smaller
ellipse, also in bold), as the probability of an extension to an A vertex is
rarer than the previously reported anomalous extensions (Y ) associated with
the first normative pattern.

To test this in a real-world scenario, we simulated a passport applica-
tion document processing scenario on the basis of the process flow depicted
in Figure 27. We generated a graph representing the processing of 1,000
passport applications, consisting of approximately 5,000 vertices and 13,000
edges. There are potentially two types of prevalent patterns in this type of
data: (a) the ApprovalOfficer and CaseOfficer both accept a passport applica-
tion, and (b) the ApprovalOfficer and CaseOfficer both reject an application.
Therefore, potentially anomalous scenarios could exist where the Approval-
Officer overrides the accept/reject recommendation from the assigned Case-
Officer.

For our testing, we used the OMNeT++ tool to generate a graph con-
sisting of these two normative patterns, although these patterns were not
the top-ranked most normative substructures. We then had the tool ran-
domly insert an anomalous instance of the first type (case officer accepts, ap-
proval officer rejects) and two anomalous instances of the second type (case
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66 W. Eberle et al.

FIGURE 28 Example of vertices labeled with numeric values.

officer rejects, approval officer accepts). Applying the GBAD algorithms
to this graph allowing only one normative pattern results in only one of
the anomalous instances to be discovered. However, when we modify the
GBAD-P algorithm (which was the only algorithm to discover an anomalous
instance) to analyze the top N normative patterns, where N is set arbitrarily to
20, all three anomalous instances are reported as the most anomalous. Other
experiments showed that the size of N was not important. For instance, in
this example, when we increase N to 100, the top three anomalies reported
are still the same ones. In addition, no other substructures are reported as
anomalous along with these top three anomalies (i.e., no false positives).

Numerical Analysis

Although GBAD provides for the structural analysis of complex data sets,
another one of the issues with this approach is the lack of analysis regarding
the numeric values that are present in certain data. GBAD has had success
discovering anomalies regarding the relations among data entities (Eberle
& Holder, 2007), including differences between node and link labels, but
sometimes the distances between actual entity values needs to be considered.
Take, for instance, the simple example shown in Figure 28.

In Figure 28, each person has a name and an age. Running GBAD
on this simple graph results in the reporting of the four age vertices as
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Insider Threat Detection 67

equally anomalous. Although each person has an age, because the ages have
different values, each person is each viewed as being structurally different.

Currently, GBAD-P calculates the probability of the existence of an edge
and/or vertex as follows:

P(attribute = value) = P(attribute exists)

where P(attribute exists) is in terms of the probability that it exists as an
extension of the normative pattern. However, when we implement the fol-
lowing change to the GBAD-P algorithm:

P ′(attribute = value) = P(attribute = value | attribute exists) ∗

P(attribute exists)

where the probability of the data is calculated as the probability of the
value, given that the attribute even exists, times the probability that it exists.
Calculating the mean and standard deviation for all attribute values, we
can generate P(attribute = value | attribute exists) by using a Gaussian
distribution:

ρ (x) = 1√
2πσ

e

− (x − µ)2

2σ 2

where σ is the standard deviation and µ is the mean.
Using the same simple example shown in Figure 28, the probability P(x)

that each age edge exists is 0.25. The mean of the age value is 37.75, and
the standard deviation is 4.03. When applying this revised probability P’,
GBAD-P is able to correctly identify that while the structures are the same,
with edges labeled “age,” the associated vertex with a labeled age of “32,”
results in the lowest probability, P’(x), and thus the greater “anomalousness”
(i.e., anomaly value closer to zero):

P′(age = 41) = 0.017876 P′(age = 38) = 0.024694
P′(age = 40) = 0.021173 P′(age = 32) = 0.008946

In addition, further experimentation with using a Gaussian probability
metric along with the structural anomalous metric indicates that any numeric
value less than one standard deviation results in the anomaly not being re-
ported as anomalous. For example, Figure 29 shows how the anomalousness
lessens (anomalous score increases) as the numeric value gets closer to the
mean, where eventually the originally anomalous vertex is just as anoma-
lous as another vertex. The bottom line in this chart (i.e., the values with
the lowest, and thus most anomalous, score) shows that as the age value is
increased, closing the gap between its value and the mean value of all of
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68 W. Eberle et al.

FIGURE 29 Numeric deviation effecting anomalousness.

the structures (i.e., the other lines in the chart), the anomalousness of this
subgraph lessens (i.e., its score increases).

To demonstrate the potential effectiveness of this approach, take the
example of a slightly more complex graph that consists of a bank transactions
scenario. In this case, the graph consists of 10 bank accounts in which each
account exhibits two deposits and two withdrawals. Then one extra deposit
was inserted into three different accounts, with two of the deposits being
closer to the mean than the other deposit. The graph consists of vertices
labeled “account,” “deposit,” and “withdrawal,” edges labeled “transaction”
and “amount,” and vertices with dollar values (e.g., “2000.0”), similar to what
is shown in Figure 30.

Again, to calculate the probability of the normal distribution, first the
mean and standard deviation of all of the amount values are calculated.
Applying the GBAD-P algorithm, it first discovers the structural differences
inherent in the three accounts that contain the extra deposits, and then it
applies the new Gaussian probability metric to correctly identify the account
that contains the deposit with the largest deviation in amount. Also, as was
shown in the earlier example, further experimentation with using a Gaus-
sian probability metric on the transaction amount, along with the structural
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anomaly metric indicates that any value less than one standard deviation
results in the anomaly not being reported as anomalous.

What makes this significant from a practical perspective is that although
the value of the anomalous deposit was high ($5,000 for this transaction, and
$1,000 and $2,000 for the other two extra deposits), there were actually 11
transactions of this same amount (i.e., out of 43 transactions, more than one
fourth of the transactions were at the $5,000 level) within this graph. If one
were to perform a traditional numerical analysis of this value in terms of all
of the deposits (and withdrawals) that were made, the value of $5,000 would
not have been interesting. However, when combined with the anomaly of the
extra structure (i.e., an extra deposit transaction), then it becomes significant.

In addition, earlier we presented a passport application scenario which
included the situation in which an employee accesses the system after hours.
Given that this scenario also includes some numerical analysis (hours), we
represented time in the graph as the number of hours since midnight, and
we used this enhanced statistical analysis of numerical attributes as part of its
evaluation of the graph structure. For this scenario, we randomly inserted two
anomalies into the graph, and the GBAD-P algorithm was able to successfully
discover both anomalies where access to the company database was during
unexpected hours, with no false positives reported. Although the structure
was the same, the time information (represented as a number), provides
extra information that aides in the insider threat detection.

DYNAMIC GRAPHS

So far, GBAD only detects anomalies in static graphs. However, many do-
mains in which we desire to detect anomalies are dynamic; that is, the
information is changing over time. One solution to this scenario is to collect
data over a time window, build a graph from this data that may or may not
explicitly represent time, and then apply GBAD to the graph. While this so-
lution will find anomalies to patterns within the time window, any dynamic
component to the patterns and anomalies will rely on a proper representa-
tion of time and a sufficiently long time window in which to observe the
patterns’ regularity.

One approach to detecting patterns of structural change in a dynamic
graph, which has been successfully applied to the domain of biological
networks (You, Holder, & Cook, 2008b), is called DynGRL (You, Holder,
& Cook, 2008a). In this approach, DynGRL first learns how one graph is
structurally transformed into another using graph rewriting rules, and then
abstracts these rules into patterns that represent the dynamics of a sequence
of graphs. The goal of DynGRL is to describe how the graphs change over
time, not merely whether they change or by how much.
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Insider Threat Detection 71

FIGURE 31 Framework of dynamic graph analysis. (A) Dynamic graph. (B) Learning graph
rewriting rules from two sequential graphs. (C) Learning entire set of graph rewriting rules.

Graph rewriting rules represent topological changes between two se-
quential versions of the graph, and transformation rules abstract the graph
rewriting rules into the repeated patterns that represent the dynamics of the
graph. Figure 31 shows the framework of this approach. The dynamic graph
contains a sequence of graphs that are generated from sampling snapshots
of the graph from a continuously-changing graph. First, the approach learns
graph rewriting rules including removals (Ri) and additions (Ai+1) between
two sequential graphs Gi and Gi+1 (Figure 31 (B)), and generates a list of all
graph-rewriting rules (Figure 31 (C)). The final step is to learn the transfor-
mation rules to abstract the structural change of the dynamic graph based on
the repeated patterns in the graph rewriting rules. If some structural changes
are repeated in the dynamic graph, there exist common subgraphs in the Rs
and As.

To detect anomalies in the change of dynamic graphs, we must first
learn how one graph is structurally transformed into another, and then ab-
stract patterns that represent the dynamics of a sequence of graphs. To detect
anomalies, the goal is to describe how the graphs change over time, and dis-
cover those changes that are structurally anomalous. Specifically, we want
to (a) look for structural modifications, insertions and deletions to nearby
instances of the transformation rules as potential anomalies to the normative
pattern; and (b) detect anomalies in the temporal application of the transfor-
mation rules, for example, when in some cases the structure does not appear
exactly four times after it was last removed. Evaluation of our approach will
involve graphs that represent data dynamically changing over time.

Using this approach, we coupled DynGRL with GBAD to produce a
system for discovering anomalies in dynamic graphs, which we call “Dyn-
GBAD.” First DynGBAD produces a sequence of difference graphs for each
pair of graphs in the time-slice sequence, searching for recurring patterns
in these difference graphs. DynGBAD then analyzes these difference graphs
using the normative recurring patterns discovered by the relational learner
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(DynGRL) and identifying anomalies to these patterns (GBAD). A dynamic
anomaly may be a change in the dynamic pattern at some point in time (sim-
ilar to what GBAD already does), but also may consist of a change in the
period of recurrence of the pattern. Our hypothesis was that a representation
that links the difference graphs together will allow DynGBAD to detect such
anomalies.

To further explain how DynGBAD works, take the simple example
shown in Figure 32. The general idea is that the subgraph consisting of ver-
tices F, G and H appears and disappears regularly over time. Specifically,
the subgraph appears and disappears in a 10100 pattern, where “1” means
presence of the subgraph at that time, and “0” means its absence. However,
at one point in the graph, the subgraph appears as 11000—an anomaly in
the regularity of the dynamic graph. Figure 32(a) shows the input dynamic
graph for this problem, and Figure 32(b) shows the normative pattern found
by GBAD in this dynamic graph. Figure 32(c) shows the anomaly found by
GBAD. While this anomaly does not make obvious the change in regularity
of the F-G-H subgraph, it is in fact the instance of the subgraph that occurs
at the time of the anomaly. So, GBAD does identify the anomalous event,
just not in the form we would like to see. However, when we expand the
size of the dynamic graph to include more occurrences of the 10100 pattern
in the likelihood that GBAD can discover the entire 10100 sequence as the
normative pattern, the discovery of the 11000 anomaly is more apparent.
Figure 33 shows the normative pattern found by DynGBAD after extending
the size of the dynamic graph to include more instances of the normative
pattern. In this case, DynGBAD finds the complete normative pattern consist-
ing of two copies of the FGH subgraph separated by one time slice. Figure
34 shows the anomaly found by DynGBAD in the extended dynamic graph.
The blue vertices and edges (located inside the squiggly shape) represent
the discovered normative pattern, the orange (located inside of the box) rep-
resents the complete anomalous instance, and the red (located inside of the
oval) indicates the specific anomaly that triggered the discovery of the entire
anomalous instance. Here we see that DynGBAD finds the anomaly within
a larger context; namely, two FGH subgraphs occur in two consecutive time
slices. So, in order to find the proper context, we must be sure that the
normative pattern occurs with sufficient frequency to be fully captured by
DynGBAD; thus, allowing anomalies to these patterns to be discovered with
sufficient context for a user to determine where they occur in the dynamic
graph and to what extent they differ from the normative pattern.

We have also done some initial real-world testing of our DynGBAD
approach using the Enron e-mail data set. Previously, we have used GBAD
to analyze this data set by looking for anomalies in graphs representing the
e-mail traffic of an employee, but we have yet to consider how this traffic
changed over time, or what anomalies to these time-changing patterns may
occur. First, we changed the static representation of the Enron data to that
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FIGURE 32 Simple example of DynGBAD.
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of a dynamic graph. Each dynamic graph consists of a sequence of graphs,
each representing one day of e-mail activity for a particular employee (e.g.,
Kenneth Lay). Figure 35 shows a portion of the graph of e-mails involv-
ing Kenneth Lay on October 10, 2001. This is one graph in the sequence
comprising the dynamic graph. We initially applied DynGBAD on dynamic
graphs constructed from each day in October 2001 and on each Wednesday
(an arbitrary day of the week, when perhaps there is the most activity) in
2001. However, the normative pattern tends to be the message infrastruc-
ture (“message,, “sender,” “original” nodes) and the resulting anomalies are
uninteresting.

Figure 36 shows an alternative representation, where the message in-
formation is removed and only the senders and receivers are included in the
graph as nodes. Our desire in analyzing this type of representation is that we
will discover patterns in how these graphs change over time (e.g., Kenneth
Lay e-mails Joannie Williamson every other week) and then anomalies to
these dynamic patterns (e.g., Kenneth Lay did not e-mail Joannie Williamson
on the second Wednesday of the month, as predicted by the normative

FIGURE 33 Normative pattern found by DynGBAD on extended dynamic graph.
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Insider Threat Detection 75

FIGURE 34 Anomaly found by DynGBAD on the extended dynamic graph. The structure
in orange (inside the dashed-line-box) shows the occurrence of two F-G-H sugbraphs in
consecutive time slices, which is the correct anomaly.

pattern). Such anomalous behavior may prompt further investigation into an
employee’s activities.

The ability of DynGBAD to detect anomalies to patterns of change
in dynamic graphs will open up a new dimension in the analysis of pro-
cesses for detecting anomalies and insider threats. Given that an insider
may exhibit behavior that is structurally similar over time, detecting anoma-
lies in the regularity of this behavior may be necessary to detect nefarious
activities.
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CONCLUSIONS AND FUTURE WORK

Using the MDL principle and probabilistic approaches, we have been able to
successfully discover anomalies in graphs and patterns of varying sizes with
minimal to no false positives. Results from running the GBAD algorithms
on e-mail, cell phone traffic, business processes and cybercrime, show how
these graph-theoretic approaches can be used to identify insider threats.
Although we have been able to achieve some minimal successes when ap-
plying graph-theoretic algorithms to dynamic graphs that change over time,
clearly we have only begun to scratch the surface. In addition, we will con-
tinuously explore the incorporation of traditional data-mining approaches as
additional quantifiers to determining anomalousness. Using the OMNeT++
example, we can create limitless numbers and varieties of simulations model-
ing business processes, network traffic, e-mail flows, and so forth. These can
then be used to evaluate GBAD systematically and on models of real-world
processes.

Two of the issues with current graph-based anomaly-detection ap-
proaches are their inability to use numeric values along with their structural
analysis to aid in the discovery of anomalies, and their inability to discover
anomalous substructures that are not part of the normative pattern. We will
continue researching other numeric analysis approaches that can be incorpo-
rated into the structural analysis so as to further delineate “anomalousness.”
In addition, we will analyze our ability to discover an anomaly involving two
different numeric attributes that individually are not anomalous, but together
are rare. We will also investigate the limitations involved with analyzing mul-
tiple normative patterns, including how well this approach scales with the
size of the graph, number of normative patterns, and size of the normative
patterns.

In addition, we have only just begun to research the effectiveness of
applying a graph-based approach to dynamic data. Further research into not
only the graph representation of dynamic data, but also the techniques for
analyzing graphs that represent data that is changing over time, will be valu-
able for providing a more comprehensive graph-based anomaly-detection
approach to discovering insider threats.
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