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Abstract 
According to a survey conducted by the Communications 
Fraud Control Association an estimated $46.3 billion were 
lost due to telecommunications fraud in 2013. This suggests 
that the potential for intentional exploitation of unsuspecting 
users is an ongoing issue, and finding anomalies in 
telecommunications data can aide in the security of users, 
their phones, their personal information, and the companies 
that provide them services. Most anomaly detection 
approaches applied to this type of data use some type of 
statistical representation; however, we think that a more 
natural representation is to consider telecom traffic as a 
graph. In this paper, we specifically focus on using graph- 
based anomaly detection to find and report anomalies in 
telecom data. Up until now, little work seems to be focused 
on detecting and reporting anomalies in telecommunications 
data represented as a graph. Moreover, even less work 
seems to focus on detecting anomalies in phone call history 
with this same representation. Our goal in this application 
paper is to use real-world cell phone traffic to detect 
anomalies in user patterns based on phone call and text 
message history. 

 Introduction   
According to the International Telecommunication Union 
(ITU), in 2014 mobile subscriptions in underdeveloped 
nations are estimated to be quickly growing and mobile 
subscriptions in developed nations are estimated to start 
reaching levels of saturation [ITU 2014]. This increase in 
the use of mobile devices can have serious implications 
ranging anywhere from protecting the security of user 
information to protecting mobile phone service providers 
from fraudulent usage of services such as cloning SIM 
cards, etc. With this abundance of mobile 
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telecommunications data, it is possible and increasingly 
valuable to find and report anomalies in the data to prevent 
personal threats to users, financial threats to service 
providers, or other types of unexpected threats. One area of 
research that can aid in this type of potential threat is 
anomaly detection. In this paper we aim to show that, 
specifically in the case of mobile telecom data, a graph-
based anomaly detection approach can provide some 
valuable insight into the calling patterns. 

Examination of call records shows the intuitive nature of 
representing this data in terms of a graph. For example, 
Onnela et al., while not specifically focusing on the 
problem of anomaly detection, have success representing 
their large-scale phone call data as a call graph [Onnela et 
al. 2007]. Similarly, Eberle and Holder showed that 
anomalies in movements and social relationships can be 
detected using data from mobile devices represented as a 
graph [Eberle and Holder 2008]. This representation 
follows from the fact that we can consider phone calls as a 
type of transaction between individuals which indicates a 
relationship between them. Take for example, a phone call 
from person A to person B who, in turn, calls person C. 
We now have an indirect relationship between person A 
and person C. Thus, upon representing each person as a 
node in a graph and the phone calls between them as edges, 
it is straightforward to visualize the relationships between 
each person. 

We believe that representing telecom data as a graph 
will provide an intuitive and efficient method for detecting 
anomalies. To evaluate our hypothesis, we will use the 
Graph-Based Anomaly Detection (GBAD) tool - provided 
by Eberle and Holder and discussed in their 2007 paper - in 
the hopes of finding anomalies in the data [Eberle and 
Holder 2007]. We include phone call and text message data 
as our primary anomaly detection features. 

Detecting Anomalies in Mobile Telecommunication 
Networks Using a Graph Based Approach   
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different than its normative pattern at a different time. As 
we attempt to apply this approach to “big data”, or 
streaming data, we will need to evaluate the optimization 
of techniques that will allow for a graph-based anomaly 
detection approach to be used in real-time. 
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