Regenerative Solid Oxide Cells (SOFC/SOEC) 2022 Pentagon Energy Expo Exhibit 73

Development of Solid Oxide Cells Coupled with Rocket Bipropellant Storage

- Possibility of power delivery non-sunlit phase of operation.
- Need for concept
 validation through
 system-level simulation.
- Need for materials development for enhanced cell life and power output.

mini-Satenite Operating Power	
Requirements	
Power	
(W)	
12.0	
25.0	
22.0	
600.0	
60.0	

S. Ulrich et al. Acta Astronautica 64(2009) 244 –255

Advanced Manufacturing and Simulation of Solid Oxide Electrodes

Operational Validation of Various Solid Oxide Power Systems

- Optimize electrode composition and porosity locally through aerosol jet additive manufacturing.
- Minimize electrochemical losses due to gas transport and ion conduction.
- Minimize thermal stresses between electrodes and electrolyte.
- Enhance stability against degradation with tuned material inputs.
- Development of modified equations for gas diffusion and ionic conduction in anisotropic electrodes.

System Simulation Capabilities

Dynamic model of electrochemical system integrated with rocket motors

Hypergolic HZ/NTO SOFC System LOX/LH₂ S

Tennessee Tech Solid Oxide High Temp/High Pressure Testing Capabilities

and propellant storage.

- Faster-than-real-time thermal-chemical simulation models.
- Electrochemistry model parameters fit to transient experimental results.

Dynamic Optimization of Controls for Start-up and Shut-down (minimize fuel loss and thermal stresses)

Approved for public release; distribution is unlimited. Public Affairs release approval #<u>AFRL-2021-1797, AFRL-2021-3162</u>

Engine System

Research Team

THE AIR FORCE RESEARCH LABORATORY