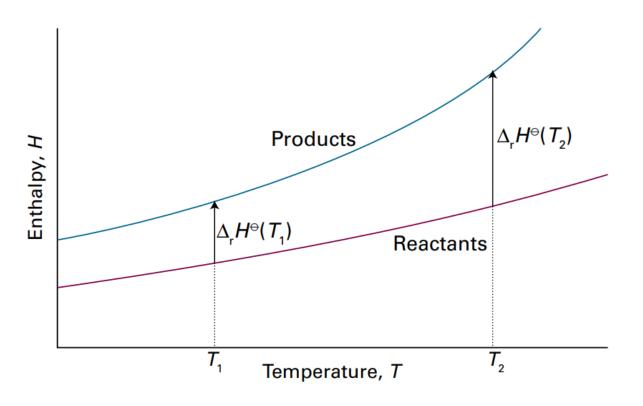
$$dH = C_p dT$$

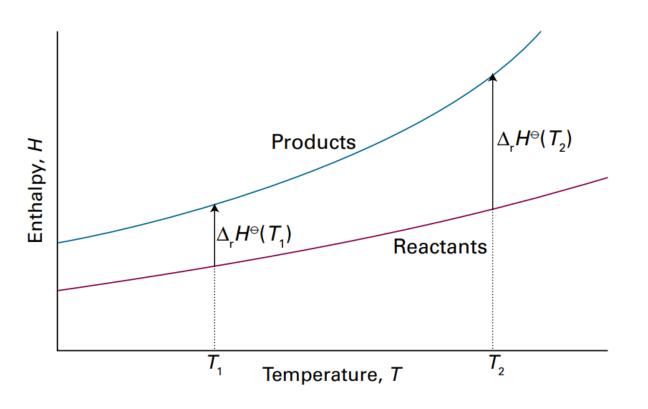
$$dH = C_p dT$$

$$H(T_2) = H(T_1) + \int_{T_1}^{T_2} C_p dT$$



$$dH = C_p dT$$

$$H(T_2) = H(T_1) + \int_{T_1}^{T_2} C_p dT$$

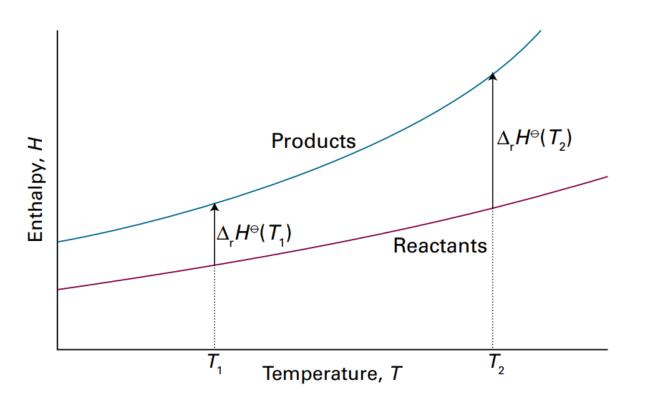


Kirchhoff's law

$$\Delta_{\mathbf{r}}H^{\Theta}(T_{2}) = \Delta_{\mathbf{r}}H^{\Theta}(T_{1}) + \int_{T_{1}}^{T_{2}} \Delta_{\mathbf{r}}C_{p}^{\Theta} dT$$

$$dH = C_p dT$$

$$H(T_2) = H(T_1) + \int_{T_1}^{T_2} C_p dT$$



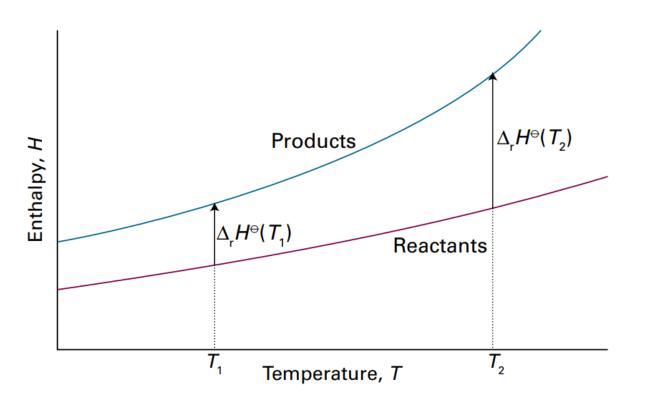
Kirchhoff's law

$$\Delta_{\mathbf{r}} H^{\ominus}(T_{2}) = \Delta_{\mathbf{r}} H^{\ominus}(T_{1}) + \int_{T_{1}}^{T_{2}} \Delta_{\mathbf{r}} C_{p}^{\ominus} dT$$

$$\Delta_{\mathbf{r}} C_{p}^{\ominus} = \sum_{\text{Products}} v C_{p,m}^{\ominus} - \sum_{\text{Reactants}} v C_{p,m}^{\ominus}$$

$$dH = C_p dT$$

$$H(T_2) = H(T_1) + \int_{T_1}^{T_2} C_p dT$$



Kirchhoff's law

$$\Delta_{\mathbf{r}} H^{\scriptscriptstyle \ominus}(T_2) = \Delta_{\mathbf{r}} H^{\scriptscriptstyle \ominus}(T_1) + \int_{T_1}^{T_2} \Delta_{\mathbf{r}} C_p^{\scriptscriptstyle \ominus} dT$$

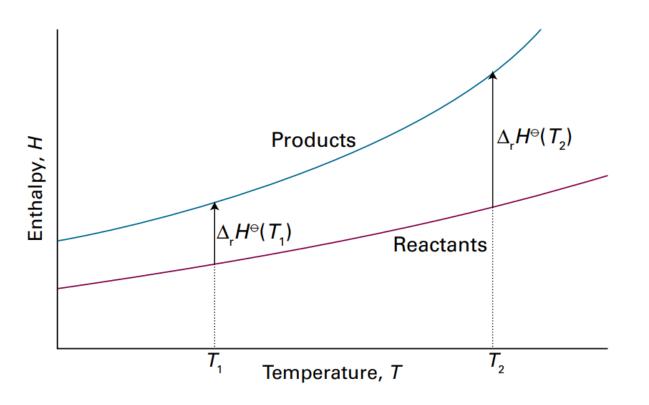
$$\Delta_{\mathbf{r}}H^{\ominus}(T_2) = \Delta_{\mathbf{r}}H^{\ominus}(T_1) + \Delta_{\mathbf{r}}C_p^{\ominus}(T_2 - T_1)$$



The difference in heat capacities varies less significantly

$$dH = C_p dT$$

$$H(T_2) = H(T_1) + \int_{T_1}^{T_2} C_p dT$$



Kirchhoff's law

$$\Delta_{\mathbf{r}} H^{\scriptscriptstyle \ominus}(T_2) = \Delta_{\mathbf{r}} H^{\scriptscriptstyle \ominus}(T_1) + \int_{T_1}^{T_2} \Delta_{\mathbf{r}} C_p^{\scriptscriptstyle \ominus} dT$$

$$\Delta_{\mathbf{r}}H^{\ominus}(T_{2}) = \Delta_{\mathbf{r}}H^{\ominus}(T_{1}) + \Delta_{\mathbf{r}}C_{p}^{\ominus}(T_{2} - T_{1})$$

$$\Delta_{\mathbf{r}} C_{p}^{\ominus} = \sum_{\text{Products}} v C_{p,\mathbf{m}}^{\ominus} - \sum_{\text{Reactants}} v C_{p,\mathbf{m}}^{\ominus}$$

$$dH = C_p dT$$

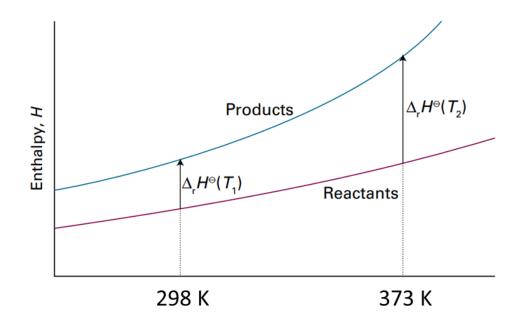
$$H(T_2) = H(T_1) + \int_{T_1}^{T_2} C_p dT$$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$$

The standard enthalpy of formation of $H_2O(g)$ at 298 K is $-241.82 \, \text{kJ} \, \text{mol}^{-1}$. Estimate its value at $100 \, ^{\circ}\text{C}$ given the following values of the molar heat capacities at constant pressure: $H_2O(g)$: $33.58 \, \text{J} \, \text{K}^{-1} \, \text{mol}^{-1}$; $H_2(g)$: $28.84 \, \text{J} \, \text{K}^{-1} \, \text{mol}^{-1}$; $O_2(g)$: $29.37 \, \text{J} \, \text{K}^{-1} \, \text{mol}^{-1}$. Assume that the heat capacities are independent of temperature.

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$$

The standard enthalpy of formation of $H_2O(g)$ at 298 K is $-241.82 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$. Estimate its value at $100\,^{\circ}\mathrm{C}$ given the following values of the molar heat capacities at constant pressure: $H_2O(g)$: $33.58 \,\mathrm{J\,K^{-1}\,mol}^{-1}$; $H_2(g)$: $28.84 \,\mathrm{J\,K^{-1}\,mol}^{-1}$; $O_2(g)$: $29.37 \,\mathrm{J\,K^{-1}\,mol}^{-1}$. Assume that the heat capacities are independent of temperature.

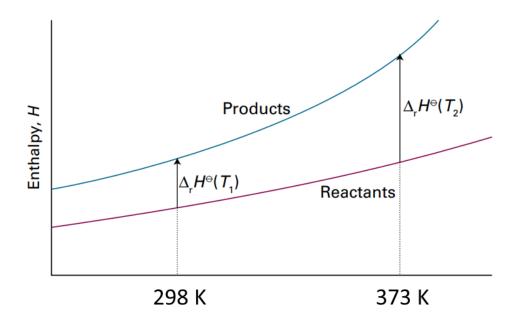


$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$$

The standard enthalpy of formation of $H_2O(g)$ at 298 K is $-241.82 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$. Estimate its value at $100\,^{\circ}\mathrm{C}$ given the following values of the molar heat capacities at constant pressure: $H_2O(g)$: $33.58 \,\mathrm{J\,K^{-1}\,mol}^{-1}$; $H_2(g)$: $28.84 \,\mathrm{J\,K^{-1}\,mol}^{-1}$; $O_2(g)$: $29.37 \,\mathrm{J\,K^{-1}\,mol}^{-1}$. Assume that the heat capacities are independent of temperature.

Kirchhoff's law

$$\Delta_{\mathbf{r}} H^{\ominus}(T_2) = \Delta_{\mathbf{r}} H^{\ominus}(T_1) + \Delta_{\mathbf{r}} C_p^{\ominus}(T_2 - T_1)$$



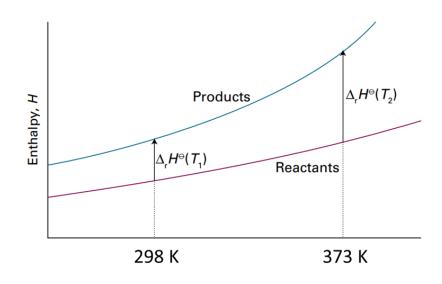
$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$$

The standard enthalpy of formation of $H_2O(g)$ at 298 K is $-241.82 \, \text{kJ} \, \text{mol}^{-1}$. Estimate its value at $100 \, ^{\circ}\text{C}$ given the following values of the molar heat capacities at constant pressure: $H_2O(g)$: $33.58 \, \text{J} \, \text{K}^{-1} \, \text{mol}^{-1}$; $H_2(g)$: $28.84 \, \text{J} \, \text{K}^{-1} \, \text{mol}^{-1}$; $O_2(g)$: $29.37 \, \text{J} \, \text{K}^{-1} \, \text{mol}^{-1}$. Assume that the heat capacities are independent of temperature.

Kirchhoff's law

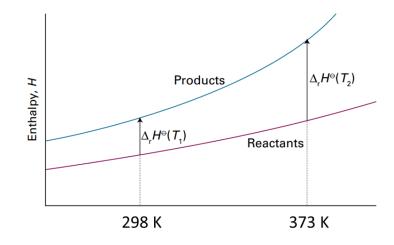
$$\Delta_{\mathbf{r}} H^{\ominus}(T_{2}) = \Delta_{\mathbf{r}} H^{\ominus}(T_{1}) + \Delta_{\mathbf{r}} C_{p}^{\ominus}(T_{2} - T_{1})$$

$$-241.82 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$



$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$$

The standard enthalpy of formation of $H_2O(g)$ at 298 K is $-241.82 \, \text{kJ} \, \text{mol}^{-1}$. Estimate its value at $100 \, ^{\circ}\text{C}$ given the following values of the molar heat capacities at constant pressure: $H_2O(g)$: $33.58 \, \text{J} \, \text{K}^{-1} \, \text{mol}^{-1}$; $H_2(g)$: $28.84 \, \text{J} \, \text{K}^{-1} \, \text{mol}^{-1}$; $O_2(g)$: $29.37 \, \text{J} \, \text{K}^{-1} \, \text{mol}^{-1}$. Assume that the heat capacities are independent of temperature.



$$\Delta_{r}H^{\ominus}(T_{2}) = \Delta_{r}H^{\ominus}(T_{1}) + \Delta_{r}C_{p}^{\ominus}(T_{2} - T_{1})$$

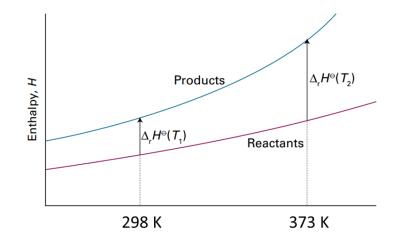
$$-241.82 \text{ kJ mol}^{-1}$$

$$\Delta_{r}C_{p}^{\ominus} = C_{p,m}^{\ominus}(H_{2}O_{,g}) - \{C_{p,m}^{\ominus}(H_{2},g) + \frac{1}{2}C_{p,m}^{\ominus}(O_{2},g)\}$$

$$= -9.94 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$$

The standard enthalpy of formation of $H_2O(g)$ at 298 K is $-241.82 \, \text{kJ} \, \text{mol}^{-1}$. Estimate its value at $100 \, ^{\circ}\text{C}$ given the following values of the molar heat capacities at constant pressure: $H_2O(g)$: $33.58 \, \text{J} \, \text{K}^{-1} \, \text{mol}^{-1}$; $H_2(g)$: $28.84 \, \text{J} \, \text{K}^{-1} \, \text{mol}^{-1}$; $O_2(g)$: $29.37 \, \text{J} \, \text{K}^{-1} \, \text{mol}^{-1}$. Assume that the heat capacities are independent of temperature.



$$\Delta_{\mathbf{r}}H^{\ominus}(T_{2}) = \Delta_{\mathbf{r}}H^{\ominus}(T_{1}) + \Delta_{\mathbf{r}}C_{p}^{\ominus}(T_{2} - T_{1})$$

$$-241.82 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

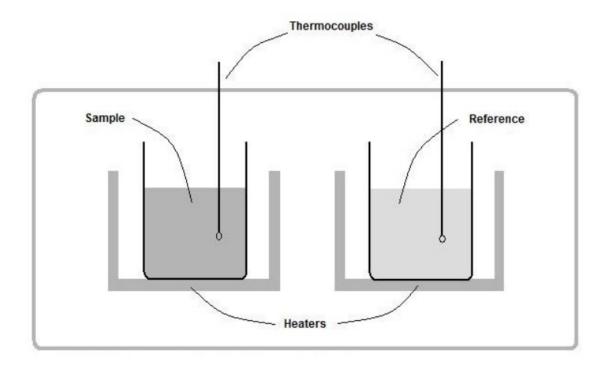
$$\Delta_{\mathbf{r}}C_{p}^{\ominus} = C_{p,\mathrm{m}}^{\ominus}(H_{2}\mathrm{O},\mathrm{g}) - \{C_{p,\mathrm{m}}^{\ominus}(H_{2},\mathrm{g}) + \frac{1}{2} \, C_{p,\mathrm{m}}^{\ominus}(\mathrm{O}_{2},\mathrm{g})\}$$

$$= -9.94 \,\mathrm{J} \,\mathrm{K}^{-1} \,\mathrm{mol}^{-1}$$

$$\Delta_{\rm r} H^{\oplus}(373 \,\mathrm{K}) = -241.82 \,\mathrm{kJ \, mol^{-1}} + (75 \,\mathrm{K})$$

$$\times (-9.94 \,\mathrm{J \, K^{-1} \, mol^{-1}}) = -242.6 \,\mathrm{kJ \, mol^{-1}}$$

Differential Scanning Calorimetry



- Sample and reference (solvent) reside in separate chambers
- Separate sources heat the chambers in a way that their temperatures are always equal
- The heating rates, which were used to maintain equivalent temperatures, are logged
- Any difference between the two can be attributed to the presence of the substance of interest

Focus 2: The First Law

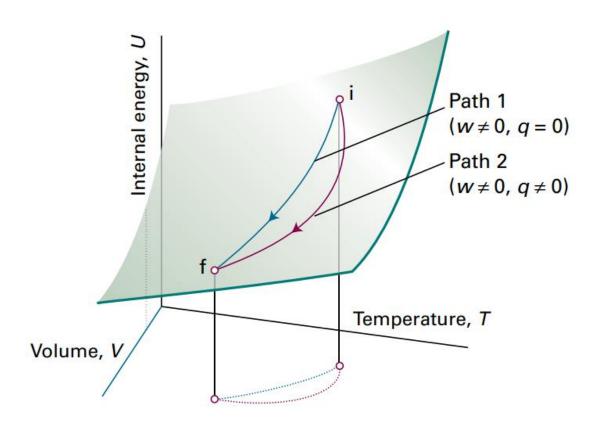
Internal Energy

Enthalpy

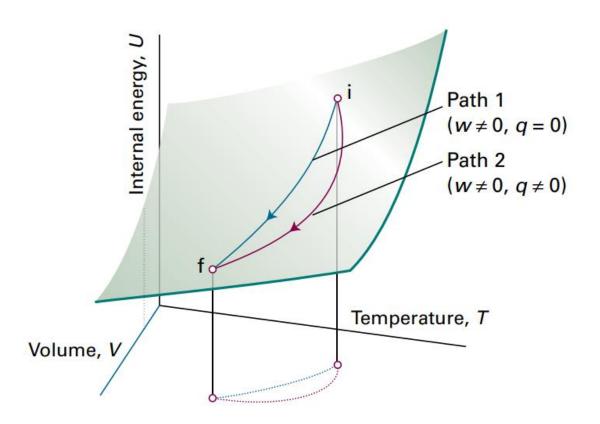
Thermochemistry

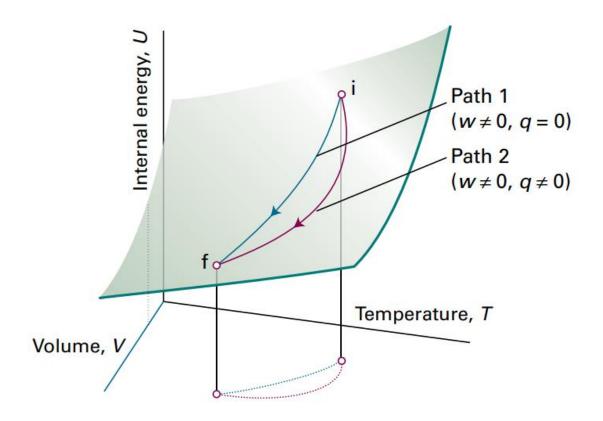
State functions

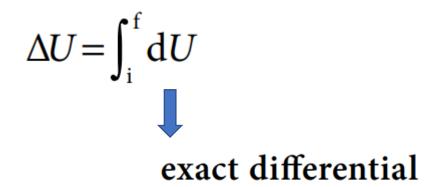
Adiabatic changes



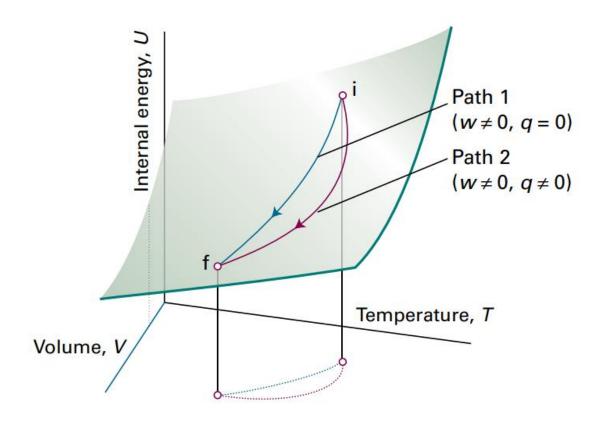
$$\Delta U = \int_{i}^{f} dU$$







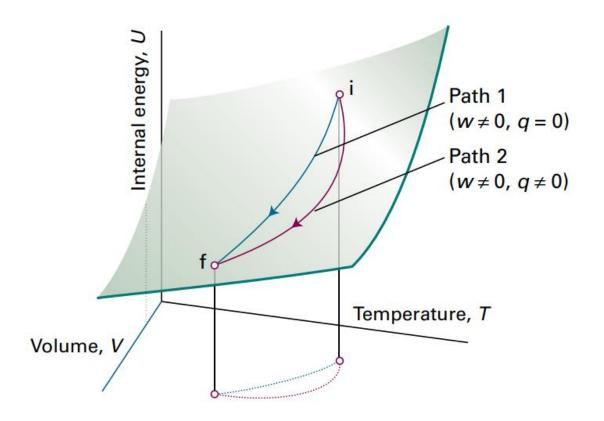
A differential dX is called exact if it represents the differential of a state function

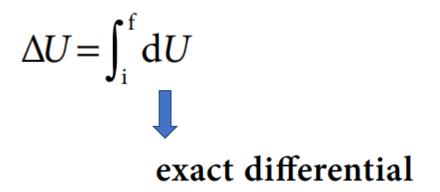


$$\Delta U = \int_{i}^{f} dU$$
exact differential

A differential dX is called exact if it represents the differential of a state function

$$q = \int_{i,path}^{f} dq$$

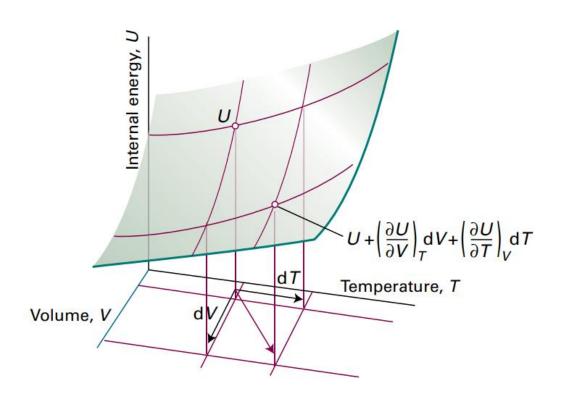


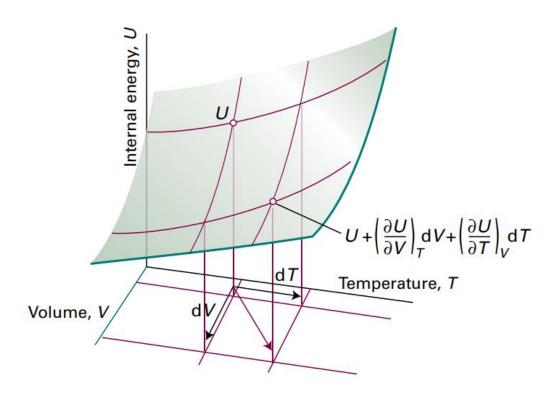


A differential dX is called exact if it represents the differential of a state function

$$q = \int_{i,path}^{f} dq$$
inexact differential

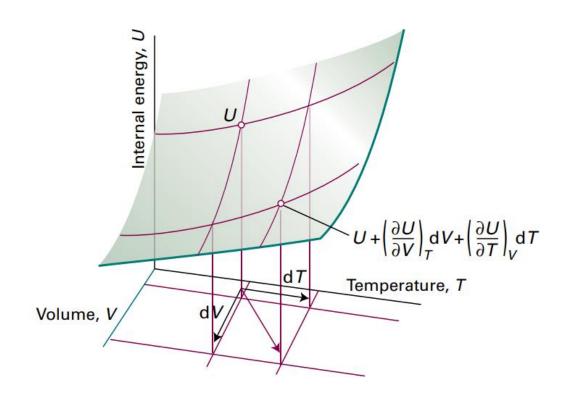
A differential dX is called inexact if it represents the differential of a path function

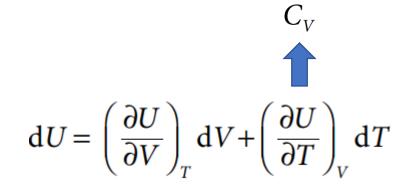


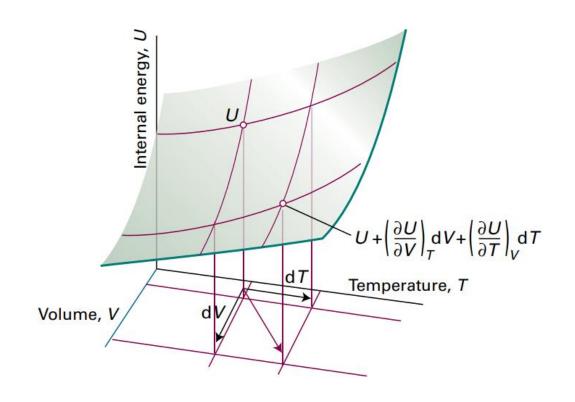


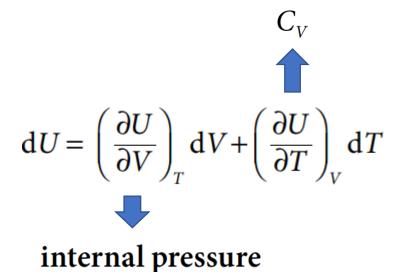
If a function U(V,T) depends on two independent variables v and T:

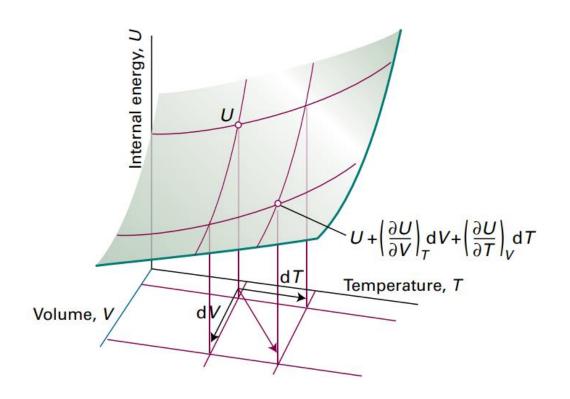
$$dU = \left(\frac{\partial U}{\partial V}\right)_T dV + \left(\frac{\partial U}{\partial T}\right)_V dT$$

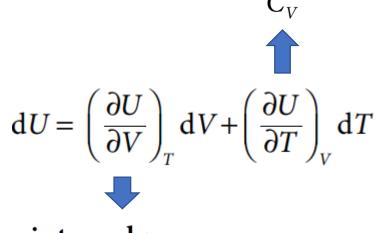






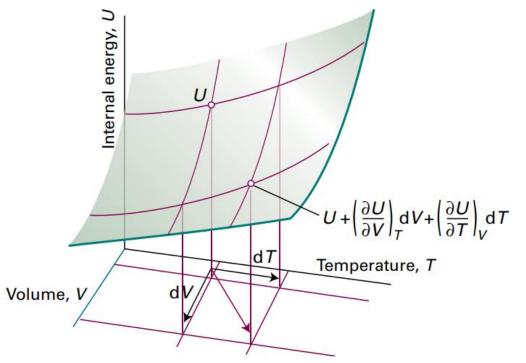




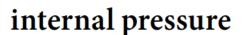


internal pressure

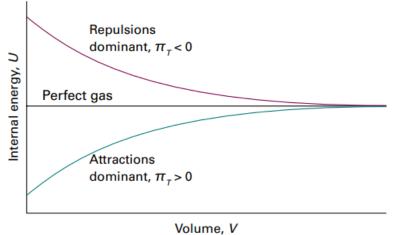
$$dU = \pi_T dV + C_V dT$$



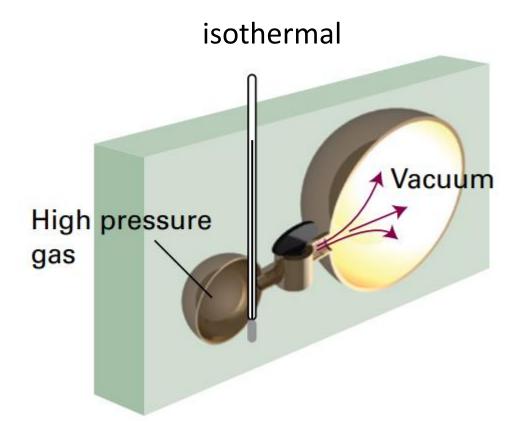
$$dU = \left(\frac{\partial U}{\partial V}\right)_T dV + \left(\frac{\partial U}{\partial T}\right)_V dT$$



$$dU = \pi_T dV + C_V dT$$

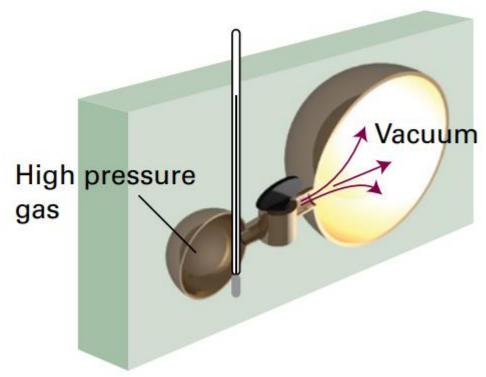


 $\pi_{\mathsf{T}} = 0$ for perfect gases



James Prescott Joule (1818 – 1889) was an English physicist

isothermal



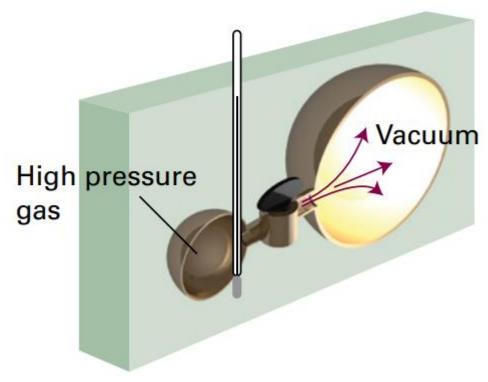
$$w = 0$$

$$q = 0$$

$$\Delta U = 0$$

James Prescott Joule (1818 – 1889) was an English physicist

isothermal



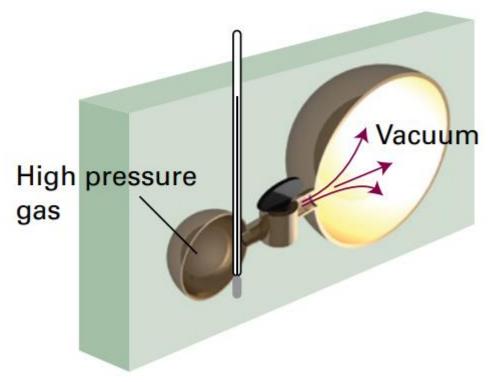
$$q = 0$$

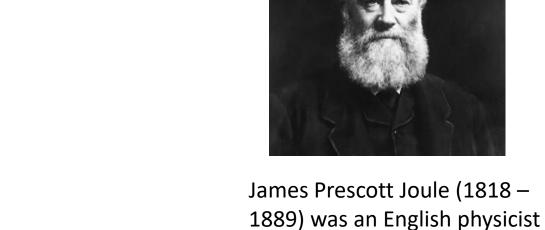
$$\Delta U = 0$$

No change in U, $\left(\frac{\partial U}{\partial V}\right)_T = \pi_T = 0$

James Prescott Joule (1818 – 1889) was an English physicist

isothermal





$$w = 0$$

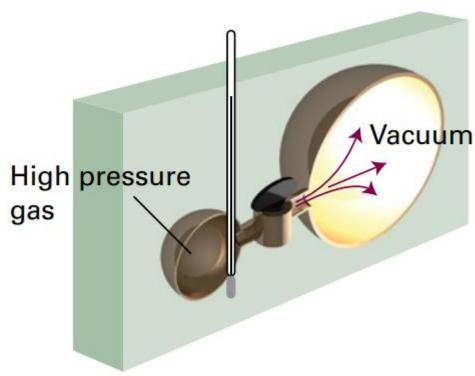
$$q = 0$$

$$\Delta U = 0$$

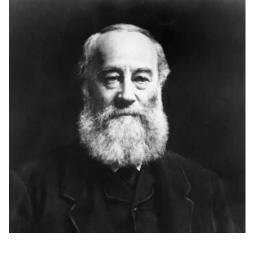
No change in U,
$$\left(\frac{\partial U}{\partial V}\right)_T = \pi_T = 0$$

Joule concluded that U does not change when a gas expands isothermally and therefore that $\pi_T = 0$.

isothermal



Joule extracted a limited property of gas, a characteristic of a perfect gas, without noticing the small deviations in real gases.



James Prescott Joule (1818 – 1889) was an English physicist

$$w = 0$$

$$q = 0$$

$$\Delta U = 0$$

No change in U,
$$\left(\frac{\partial U}{\partial V}\right)_T = \pi_T = 0$$

Joule concluded that U does not change when a gas expands isothermally and therefore that $\pi_{\tau} = 0$.

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p$$
 expansion coefficient

$\alpha/(10^{-4} \text{ K}^{-1})$	$\kappa_T / (10^{-6} \text{ bar}^{-1})$
12.4	90.9
2.1	49.0
0.030	0.185
0.861	2.18
	12.4 2.1 0.030

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p}$$

expansion coefficient

	$\alpha/(10^{-4} \text{ K}^{-1})$	$\kappa_T / (10^{-6} \text{bar}^{-1})$
Liquids:		
Benzene	12.4	90.9
Water	2.1	49.0
Solids:		
Diamond	0.030	0.185
Lead	0.861	2.18
	$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p$	

expansion coefficient

	$\alpha/(10^{-4} \text{ K}^{-1})$	$\kappa_{T}/(10^{-6} \mathrm{bar}^{-1})$
Liquids:		
Benzene	12.4	90.9
Water	2.1	49.0
Solids:		
Diamond	0.030	0.185
Lead	0.861	2.18
	_	

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p}$$

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p} \qquad \kappa_{T} = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{T}$$

For a perfect gas;

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p}$$

	$\alpha/(10^{-4} \text{ K}^{-1})$	$\kappa_{T}/(10^{-6} \mathrm{bar}^{-1})$
Liquids:		
Benzene	12.4	90.9
Water	2.1	49.0
Solids:		
Diamond	0.030	0.185
Lead	0.861	2.18

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p}$$

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$$

expansion coefficient

For a perfect gas;

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p}$$
$$= \frac{1}{V} \left(\frac{\partial (nRT/p)}{\partial T} \right)_{p}$$

	$\alpha/(10^{-4} \text{ K}^{-1})$	$\kappa_{T}/(10^{-6} \mathrm{bar}^{-1})$
Liquids:		
Benzene	12.4	90.9
Water	2.1	49.0
Solids:		
Diamond	0.030	0.185
Lead	0.861	2.18

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p}$$

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$$

expansion coefficient

For a perfect gas;

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p}$$

$$= \frac{1}{V} \left(\frac{\partial (nRT/p)}{\partial T} \right)_{p}$$

$$= \frac{1}{V} \times \frac{nR}{p}$$

$$= \frac{nR}{nRT} = \frac{1}{T}$$

	$\alpha/(10^{-4} \text{ K}^{-1})$	$\kappa_{T}/(10^{-6} \mathrm{bar}^{-1})$
Liquids:		
Benzene	12.4	90.9
Water	2.1	49.0
Solids:		
Diamond	0.030	0.185
Lead	0.861	2.18

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p}$$

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$$

expansion coefficient

For a perfect gas;

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p}$$

$$= \frac{1}{V} \left(\frac{\partial (nRT/p)}{\partial T} \right)_{p}$$

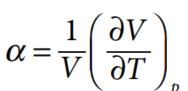
$$= \frac{1}{V} \times \frac{nR}{p}$$

$$= \frac{nR}{nRT} = \frac{1}{T}$$

	$\alpha/(10^{-4} \text{ K}^{-1})$	$\kappa_T / (10^{-6} \text{bar}^{-1})$
Liquids:		
Benzene	12.4	90.9
Water	2.1	49.0
Solids:		
Diamond	0.030	0.185
Lead	0.861	2.18

For a perfect gas;

$$\kappa_T = 1/p$$



$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$$

expansion coefficient