$C_{\rm p}$ and $C_{\rm v}$

perfect gas: $C_p - C_V = nR$

 $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ $= 0.082 \text{ 05 L atm mol}^{-1} \text{ K}^{-1}$

Variation of heat capacity (molar)

$$C_{p,m} = a + bT + \frac{c}{T^2}$$

a, b, and c are empirical parameters

	а	$b/(10^{-3} \text{ K}^{-1})$	$c/(10^5 \text{ K}^2)$
C(s, graphite)	16.86	4.77	-8.54
$CO_2(g)$	44.22	8.79	-8.62
$H_2O(l)$	75.29	0	0
$N_2(g)$	28.58	3.77	-0.50

What is the change in molar enthalpy of N_2 when it is heated from 25 °C to 100 °C? Use the heat capacity information in

Table		а	$b/(10^{-3} \text{ K}^{-1})$	$c/(10^5 \text{ K}^2)$
	C(s, graphite)	16.86	4.77	-8.54
	$CO_2(g)$	44.22	8.79	-8.62
	H ₂ O(l)	75.29	0	0
	N ₂ (g)	28.58	3.77	-0.50

$$C_{p,m} = a + bT + \frac{c}{T^2}$$

Question What is the change in molar enthalpy of N₂ when it is heated from 25°C to 100°C? Use the heat capacity information in

Table		а	$b/(10^{-3} \text{ K}^{-1})$	$c/(10^5 \text{ K}^2)$
	C(s, graphite)	16.86	4.77	-8.54
	$CO_2(g)$	44.22	8.79	-8.62
	H ₂ O(l)	75.29	0	0
	N ₂ (g)	28.58	3.77	-0.50

 $dH = C_p dT$ \Box $C_{p,m} = a + bT + \frac{c}{T^2}$

What is the change in molar enthalpy of N_2 when it is heated from 25 °C to 100 °C? Use the heat capacity information in

Table		a	$b/(10^{-3} \text{ K}^{-1})$	$c/(10^5 \text{ K}^2)$
	C(s, graphite)	16.86	4.77	-8.54
	$CO_2(g)$	44.22	8.79	-8.62
	$H_2O(l)$	75.29	0	0
	N ₂ (g)	28.58	3.77	-0.50

$$\int_{H_{\rm m}(T_1)}^{H_{\rm m}(T_2)} \mathrm{d}H_{\rm m} = \int_{T_1}^{T_2} \left(a + bT + \frac{c}{T^2}\right) \mathrm{d}T$$

What is the change in molar enthalpy of N_2 when it is heated from 25 °C to 100 °C? Use the heat capacity information in

Table		а	$b/(10^{-3} \text{ K}^{-1})$	$c/(10^5 \text{ K}^2)$
	C(s, graphite)	16.86	4.77	-8.54
	$CO_2(g)$	44.22	8.79	-8.62
	H ₂ O(l)	75.29	0	0
	N ₂ (g)	28.58	3.77	-0.50

$$\int_{H_{\rm m}(T_1)}^{H_{\rm m}(T_2)} \mathrm{d}H_{\rm m} = \int_{T_1}^{T_2} \left(a + bT + \frac{c}{T^2} \right) \mathrm{d}T$$
$$H_{\rm m}(T_2) - H_{\rm m}(T_1) = a(T_2 - T_1) + \frac{1}{2}b(T_2^2 - T_1^2) - c\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

What is the change in molar enthalpy of N_2 when it is heated from 25 °C to 100 °C? Use the heat capacity information in

Table		а	$b/(10^{-3} \text{ K}^{-1})$	$c/(10^5 \text{ K}^2)$
	C(s, graphite)	16.86	4.77	-8.54
	$CO_2(g)$	44.22	8.79	-8.62
	$H_2O(l)$	75.29	0	0
	N ₂ (g)	28.58	3.77	-0.50

$$\int_{H_{\rm m}(T_1)}^{H_{\rm m}(T_2)} \mathrm{d}H_{\rm m} = \int_{T_1}^{T_2} \left(a + bT + \frac{c}{T^2} \right) \mathrm{d}T$$
$$H_{\rm m}(T_2) - H_{\rm m}(T_1) = a(T_2 - T_1) + \frac{1}{2}b(T_2^2 - T_1^2) - c\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$
$$2.201 \,\mathrm{J} = a(T_2 - T_1) + \frac{1}{2}b(T_2^2 - T_1^2) - c\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

 $= 2.20 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

Focus 2: The First Law Internal Energy Enthalpy Thermochemistry State functions

Adiabatic changes

exothermic (exent halpic) process: $\Delta H < 0$ endothermic (endent halpic) process: $\Delta H > 0$

exothermic (exent halpic) process: $\Delta H < 0$ endothermic (endent halpic) process: $\Delta H > 0$

The standard enthalpy change for a reaction:

The difference in enthalpy between the products and the reactants in their standard states at a specified temperature

exothermic (exent halpic) process: $\Delta H < 0$ endothermic (endent halpic) process: $\Delta H > 0$

The standard enthalpy change for a reaction:

The difference in enthalpy between the products and the reactants in their standard states at a specified temperature

the most stable form of that substance at a pressure of 1 bar

exothermic (exent halpic) process: $\Delta H < 0$ endothermic (endent halpic) process: $\Delta H > 0$

The standard enthalpy change for a reaction:

The difference in enthalpy between the products and the reactants in their standard states at a specified temperature

the most stable form of that substance at a pressure of 1 bar

Standard (molar) enthalpy of $H_2O(l) \rightarrow H_2O(g)$ $\Delta_{vap}H^{\oplus}(373 \text{ K}) = +40.66 \text{ kJ mol}^{-1}$ vaporization

Transition	Exemplary Chemical Reaction	Symbol
Transition (Phase $\alpha \rightarrow$ Phase β)	$\mathbf{Diamond} \to \mathbf{Graphite}$	$\Delta_{ m trs} H$
Fusion (s \rightarrow l)	$\mathrm{H}_2O(s) ightarrow \mathrm{H}_2O(l)$	$\Delta_{ m fus} H$
Vaporization $(I \rightarrow g)$	$\mathrm{H}_2O(l) ightarrow \mathrm{H}_2O(g)$	$\Delta_{ m vap} H$
Sublimation (s \rightarrow g)	$\mathrm{CO}_2(s) o \mathrm{CO}_2(g)$	$\Delta_{ m sub} H$
Mixing (Pure → Mixture)	${ m NaCl}+{ m H_2}O ightarrow{ m NaCl(aq)}$	$\Delta_{ m mix} H$
Solution (Solute \rightarrow Solution)	$\mathrm{KCl}(\mathrm{s}) ightarrow \mathrm{K}^+(aq) + \mathrm{Cl}^-(aq)$	$\Delta_{ m sol} H$
Hydration ($X^{\pm}(g) o X^{\pm}(aq)$)	$\mathrm{Cu}^{2+}(g)+6H_2O ightarrow\mathrm{Cu}^{2+}\cdot 6H_2O(aq)$	$\Delta_{ m hyd} H$
Atomization (Species → Atoms)	${ m H}_2(g) o 2 H(g)$	$\Delta_{ m at} H$
lonization ($X(g) o X^+(g) + e^-$)	${ m Na}(g) ightarrow { m Na}^+(g) + e^-$	$\Delta_{ m ion} H$
Electron Gain ($X(g) + e^- o X^-(g)$)	${ m Cl}(g)+e^- ightarrow { m Cl}^-(g)$	$\Delta_{ m eg} H$
Reaction (Reactants → Products)	$\mathrm{H}_2(g) + \mathrm{O}_2(g) ightarrow \mathrm{H}_2O(g)$	ΔH
Combustion	$\operatorname{CH}_4(g) + 2\operatorname{O}_2(g) o \operatorname{CO}_2(g) + 2\operatorname{H}_2O(g)$	$\Delta_{ m c} H$
Formation (Elements → Compound)	$\mathrm{C}(s) + 2\mathrm{H}_2(g) o \mathrm{CH}_4(g)$	$\Delta_f H$
Activation (Reactants → Activated Complex)	$\mathrm{H}_2(g) + \mathrm{I}_2(g) ightarrow [H_2I_2]^{\ddagger}$	$\Delta^{\ddagger} H$

• A state function means that its value depends only on the initial and final states of the system, not on the path taken.

- A state function means that its value depends only on the initial and final states of the system, not on the path taken.
- A direct consequence of enthalpy being a state function is that the enthalpy change of a forward reaction is equal in magnitude but opposite in sign to that of the reverse reaction.

В

 $\Delta H^{\ominus}(A \leftarrow B)$

$$\Delta H^{\oplus}(\mathbf{A} \to \mathbf{B}) = -\Delta H^{\oplus}(\mathbf{A} \leftarrow \mathbf{B})$$

$$H_2O(s) \rightarrow H_2O(g) \qquad \Delta_{sub}H^{\oplus}$$

$$H_2O(s) \rightarrow H_2O(g) \qquad \Delta_{sub}H^{\ominus}$$

$$\begin{aligned} H_2O(s) &\to H_2O(l) & \Delta_{fus}H^{\ominus} \\ H_2O(l) &\to H_2O(g) & \Delta_{vap}H^{\ominus} \end{aligned}$$

$$\begin{array}{ll} \mathrm{H_2O}(\mathrm{s}) \to \mathrm{H_2O}(\mathrm{g}) & \Delta_{\mathrm{sub}} H^{\oplus} & \mathrm{H_2O}(\mathrm{s}) \to \mathrm{H_2O}(\mathrm{l}) & \Delta_{\mathrm{fus}} H^{\oplus} \\ & \mathrm{H_2O}(\mathrm{l}) \to \mathrm{H_2O}(\mathrm{g}) & \Delta_{\mathrm{vap}} H^{\oplus} \end{array}$$

$$\Delta_{\rm sub}H^{\rm e} = \Delta_{\rm fus}H^{\rm e} + \Delta_{\rm vap}H^{\rm e}$$

$$H_2O(s) \rightarrow H_2O(g) \qquad \Delta_{sub}H^{\ominus}$$

$$\begin{array}{ll} \mathrm{H_2O}(\mathrm{s}) \to \mathrm{H_2O}(\mathrm{l}) & \Delta_{\mathrm{fus}} H^{\oplus} \\ \mathrm{H_2O}(\mathrm{l}) \to \mathrm{H_2O}(\mathrm{g}) & \Delta_{\mathrm{vap}} H^{\oplus} \end{array}$$

$$\Delta_{\rm sub}H^{\rm e}=\Delta_{\rm fus}H^{\rm e}+\Delta_{\rm vap}H^{\rm e}$$

standard reaction enthalpy, $\Delta_{\!\!\mathrm{r}} H^{\scriptscriptstyle\ominus}$

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$

$$\Delta_{\rm r} H^{\oplus} = -890 \, \rm kJ \, mol^{-1}$$

standard reaction enthalpy, $\Delta_{\!\!\mathrm{r}} H^{\scriptscriptstyle \ominus}$

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$$
 $\Delta_c H^{\ominus} = \Delta_r H^{\ominus} = -890 \text{ kJ mol}^{-1}$

standard reaction enthalpy, $\Delta_{\!\!\mathrm{r}} H^{\scriptscriptstyle\ominus}$

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$ $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l)$

$$\Delta_{\rm c}H^{\oplus} = \Delta_{\rm r}H^{\oplus} = -890\,{\rm kJ\,mol^{-1}}$$

standard reaction enthalpy, $\Delta_{\! \mathrm{r}} H^{\scriptscriptstyle \ominus}$

CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(l) $\Delta_c H^{\ominus} = \Delta_r H^{\ominus} = -890 \text{ kJ mol}^{-1}$ C₆H₁₂O₆(s) + 6O₂(g) → 6CO₂(g) + 6H₂O(l) $\Delta_c H^{\ominus} = -2808 \text{ kJ mol}^{-1}$

standard reaction enthalpy, $\Delta_{\! \mathrm{r}} H^{\scriptscriptstyle \ominus}$

CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(l) $\Delta_c H^{\ominus} = \Delta_r H^{\ominus} = -890 \text{ kJ mol}^{-1}$ C₆H₁₂O₆(s) + 6O₂(g) → 6CO₂(g) + 6H₂O(l) $\Delta_c H^{\ominus} = -2808 \text{ kJ mol}^{-1}$

$$2 \mathrm{A} + \mathrm{B} \rightarrow 3 \mathrm{C} + \mathrm{D} \qquad \Delta_{\mathrm{r}} H^{\diamond} = \{3 H^{\diamond}_{\mathrm{m}}(\mathrm{C}) + H^{\diamond}_{\mathrm{m}}(\mathrm{D})\} - \{2 H^{\diamond}_{\mathrm{m}}(\mathrm{A}) + H^{\diamond}_{\mathrm{m}}(\mathrm{B})\}$$

standard reaction enthalpy, $\Delta_{\!\!\mathrm{r}} H^{\scriptscriptstyle \ominus}$

CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(l)
$$\Delta_c H^{\ominus} = \Delta_r H^{\ominus} = -890 \text{ kJ mol}^{-1}$$

C₆H₁₂O₆(s) + 6O₂(g) → 6CO₂(g) + 6H₂O(l) $\Delta_c H^{\ominus} = -2808 \text{ kJ mol}^{-1}$

$$2 \mathrm{A} + \mathrm{B} \rightarrow 3 \mathrm{C} + \mathrm{D} \qquad \Delta_{\mathrm{r}} H^{\diamond} = \{3 H^{\diamond}_{\mathrm{m}}(\mathrm{C}) + H^{\diamond}_{\mathrm{m}}(\mathrm{D})\} - \{2 H^{\diamond}_{\mathrm{m}}(\mathrm{A}) + H^{\diamond}_{\mathrm{m}}(\mathrm{B})\}$$

$$\Delta_{\rm r} H^{\rm e} = \sum_{\rm Products} v H^{\rm e}_{\rm m} - \sum_{\rm Reactants} v H^{\rm e}_{\rm m}$$

Hess's Law

The standard reaction enthalpy is the sum of the values for the individual reactions into which the overall reaction may be divided.

Hess's Law

The standard reaction enthalpy is the sum of the values for the individual reactions into which the overall reaction may be divided.

 $6 C(s,graphite) + 3 H_2(g) \rightarrow C_6 H_6(l) + 49.0 \text{ kJ mol}^{-1}$

The standard enthalpy of formation, $\Delta_{f}H^{\circ}$, of a substance is the standard reaction enthalpy for the formation of the compound from its elements in their reference states:

 $6 C(s,graphite) + 3 H_2(g) \rightarrow C_6 H_6(l) + 49.0 \text{ kJ mol}^{-1}$

The standard enthalpy of formation, $\Delta_{f}H^{\circ}$, of a substance is the standard reaction enthalpy for the formation of the compound from its elements in their reference states:

The **reference state** of an element is its most stable state at the specified temperature and 1 bar.

 $6 C(s,graphite) + 3 H_2(g) \rightarrow C_6 H_6(l) + 49.0 \text{ kJ mol}^{-1}$

The standard enthalpy of formation, $\Delta_{f}H^{\circ}$, of a substance is the standard reaction enthalpy for the formation of the compound from its elements in their reference states:

The **reference state** of an element is its most stable state at the specified temperature and 1 bar.

Enthalpy of formation of an element in reference states = 0 kJ/mol

 $6 C(s,graphite) + 3 H_2(g) \rightarrow C_6 H_6(l) + 49.0 \text{ kJ mol}^{-1}$

The standard enthalpy of formation, $\Delta_{f}H^{\circ}$, of a substance is the standard reaction enthalpy for the formation of the compound from its elements in their reference states:

The reference state is specifically used for elements, not compounds.

Element	Reference State (Most Stable Form at 298 K, 1 bar)
Hydrogen (H)	$H_2(g)$
Oxygen (O)	$O_2(g)$
Bromine (Br)	$Br_2(l)$
Carbon (C)	Graphite $C(s)$
Sulfur (S)	Rhombic Sulfur $S_8(s)$
Phosphorus (P)	White Phosphorus $P_4(s)$
Iron (Fe)	Fe(s)
Mercury (Hg)	Hg(l)

	$\Delta_{\rm f} H^{\ominus}/({\rm kJmol^{-1}})$
H ₂ O(l)	-285.83
$H_2O(g)$	-241.82
$NH_3(g)$	-46.11
N ₂ H ₄ (1)	+50.63
$NO_2(g)$	+33.18
$N_2O_4(g)$	+9.16
NaCl(s)	-411.15
KCl(s)	-436.75

	$\Delta_{\rm f} H^{\Theta}/({\rm kJmol^{-1}})$
$CH_4(g)$	-74.81
$C_6H_6(l)$	+49.0
C ₆ H ₁₂ (l)	-156
CH ₃ OH(l)	-238.66
CH ₃ CH ₂ OH(l)	-277.69

	$\Delta_{\rm f} H^{\oplus}/({ m kJmol}^{-1})$
H ₂ O(l)	-285.83
$H_2O(g)$	-241.82
$NH_3(g)$	-46.11
$N_{2}H_{4}(l)$	+50.63
$NO_2(g)$	+33.18
$N_2O_4(g)$	+9.16
NaCl(s)	-411.15
KCl(s)	-436.75

	$\Delta_{\rm f} H^{\ominus}/({\rm kJmol^{-1}})$
$CH_4(g)$	-74.81
$C_6H_6(l)$	+49.0
C ₆ H ₁₂ (l)	-156
CH ₃ OH(l)	-238.66
CH ₃ CH ₂ OH(l)	-277.69

$$\Delta_{\rm f} H^{\rm o}({\rm H}^+,{\rm aq}) = 0$$

 $\Delta_{\rm r} H^{\rm e} = \sum v \Delta_{\rm f} H^{\rm e} - \sum v \Delta_{\rm f} H^{\rm e}$

Products

Reactants

Standard reaction enthalpy [practical implementation]

Stoichiometric coefficient $\Delta_{\rm r} H^{\oplus} = \sum_{\rm Products} v \Delta_{\rm f} H^{\oplus} - \sum_{\rm Reactants} v \Delta_{\rm f} H^{\oplus}$

Standard reaction enthalpy [practical implementation]

Standard reaction enthalpy [practical implementation]

 $\Delta_{\mathbf{r}}H^{\diamond} = \sum_{\mathbf{J}} \mathbf{v}_{\mathbf{J}} \Delta_{\mathbf{f}}H^{\diamond}(\mathbf{J})$

stoichiometric numbers

(positive for products and negative for reactants)

Example

$2 HN_3(l) + 2 NO(g) \rightarrow H_2O_2(l) + 4 N_2(g)$

Example

 $2 \operatorname{HN}_3(l) + 2 \operatorname{NO}(g) \to \operatorname{H}_2\operatorname{O}_2(l) + 4 \operatorname{N}_2(g)$

$$\Delta_{\rm r} H^{\oplus} = \Delta_{\rm f} H^{\oplus}({\rm H}_2{\rm O}_2,{\rm l}) + 4\Delta_{\rm f} H^{\oplus}({\rm N}_2,{\rm g}) - 2\Delta_{\rm f} H^{\oplus}({\rm HN}_3,{\rm l})$$
$$- 2\Delta_{\rm f} H^{\oplus}({\rm NO},{\rm g})$$

Example

 $2 \operatorname{HN}_3(l) + 2 \operatorname{NO}(g) \rightarrow \operatorname{H}_2\operatorname{O}_2(l) + 4 \operatorname{N}_2(g)$

$$\Delta_{\rm r} H^{\ominus} = \Delta_{\rm f} H^{\ominus}({\rm H}_2{\rm O}_2,{\rm l}) + 4\Delta_{\rm f} H^{\ominus}({\rm N}_2,{\rm g}) - 2\Delta_{\rm f} H^{\ominus}({\rm H}{\rm N}_3,{\rm l})$$
$$- 2\Delta_{\rm f} H^{\ominus}({\rm N}{\rm O},{\rm g})$$

 $= \{-187.78 + 4(0)\} \text{ kJ mol}^{-1}$

 $- \{2(264.0) + 2(90.25)\} \text{ kJ mol}^{-1}$

 $= -896.3 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$