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Later elaborated by R.A. Marcus, into the RRKM theory

An early statistical model developed in the 1920s to describe unimolecular reaction rates.

Key ideas of RRK theory:
A molecule undergoing a unimolecular reaction absorbs energy through a collision.

That energy is assumed to randomize instantly across all the molecule's vibrational degrees of freedom,

following a classical picture.

Reaction occurs when enough energy becomes localized along the reaction coordinate, such as the bond

that needs to break.

The probability of reaction is based on how much energy is available and how many modes are available to

share it.
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The rate constant RRK predicts is:

RRK gives a formula for the B\
- K(E)y=A(1- —
rate constant as a function of E

the molecule’s total internal

energy. where:

» A s an empirical pre-exponential factor (essentially how often the molecule “tries” to react),
» F is the molecule’s total energy,
* FEjis the threshold energy (minimum needed to react),

* s is the number of vibrational degrees of freedom.
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Rice-Ramsperger-Kassel model
Elaborated by R.A. Marcus, into the ‘RRKM model’

\ 4

RRKM theory (Rice—Ramsperger—Kassel-Marcus theory) is an improved version of RRK theory that gives a
more accurate prediction of unimolecular reaction rates (energy-resolved), especially by including
guantum mechanics and transition state theory ideas.

* Energy levels are treated as quantized, not continuous (unlike the purely classical RRK)

* Instead of simply assuming how likely a bond is to break, RRKM counts the number of quantum states
available at the transition state compared to all the states in the molecule.
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Abstract

We apply chirped-pulse uniform flow millimeterwave (CPUF-mmW) spectroscopy to study the complex multichannel reaction

dynamies in the reaction between the propargyl and amino radicals (C;H; + NH5/ND,), a radical-radical reaction of importance :
in the gas-phase chemistry of astrochemical environments and combustion systems. The photolytically generated radicals are
allowed to react in a well-characterized quasi-uniform supersonic flow, and mmW rotational spectroscopy (70—93 GHz) is used
for simultaneous detection of the reaction products: HCN, HNC, HC;N, DCN, DNC, and DC;N, while spectral intensities of the ol ol L Jf
measured pure-rotational lines allow product branching to be quantified. High-level electronic structure calculations were used _ |

for theoretical prediction of the reaction pathways and branching. Experimentally deduced product branching fractions were — L)
compared with the results from statistical simulations based on the RRKM theory. Product branching was found to be strongly ik %N |' =

dependent on the excess internal energy of the C;H; and NH,/ND, reactants.
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Figure S1a. A map of all possible reaction pathways for C3H; + NH; reaction calculated at CCSD(T)-
F12/cc-pvqz-f12//B3LYP/6-311G**+ ZPE(B3LYP/6-311G**) level of theory. Bold italic numbers
show relative energies (in kJ/mol) of various species, including intermediates, transition states,
and products with respect to NH, + C;Ha.
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Figure 51b. H elimination pathways in the C3Hs + NH; reaction leading to various CsNH,4 radicals
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Collision theory
Diffusion-controlled reactions and transition-state
The dynamics of molecular collisions
Electron transfer in homogeneous systems



Diffusion controlled reactions

Chemical reactions in which the rate is limited by how quickly the reactants can
diffuse through the medium (usually a liquid or gas) to find each other, not by the
energy barrier for the reaction itself.



Diffusion controlled reactions

Cage effect — reactants surrounded by a solvent cage
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Comes from Smoluchowski theory, which models how often
two diffusing molecules come into contact close enough to
react.

This expression gives the maximum rate at which A and B can
react, limited only by how fast they can find each other via
diffusion
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Diffusion controlled vs Activation controlled

Diffusion-controlled limit k;[AB] << k,[AB]
A+B—>AB wv=k,[A][B]
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concentration, and the flux is proportional to the concentration

gradient



Diffusion controlled vs Activation controlled
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J - diffusion flux - the rate at which species ii is transported

(amount per unit area per unit time).
D - diffusion coefficient (diffusivity)
(p - concentration

X - position
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Diffusion controlled vs Activation controlled

The order of magnitude of R* is 10"°m (100 pm) and that of
D for a species in water is 10~ m®s ™. It follows from k, = 4TR*DN,
that

k,~ 41 x(10™m) x (10°m?s™) x (6.022 x 10* mol™)
~8x 10°m°mols™

about 10°dm’mol™*s™
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K is the equilibrium constant for

A+ B+ AB.
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Kinetic isotopic effect

Decrease in the rate of a chemical reaction upon replacement of one atom in a
reactant by a heavier isotope

Primary kinetic isotope effect
Occurs when the bond to the isotopically labeled atom is broken or formed in the rate-
determining step of the reaction.

Secondary kinetic isotope effect

Occurs when the isotope substitution is not at the site of bond-breaking/forming, but still
influences the reaction rate, often due to changes in hybridization or geometry near the
reaction center.



Kinetic isotopic effect

Decrease in the rate of a chemical reaction upon replacement of one atom in a
reactant by a heavier isotope

Primary and secondary kinetic isotope effects
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Kinetic isotopic effect

Decrease in the rate of a chemical reaction upon replacement of one atom in a
reactant by a heavier isotope

Primary and secondary kinetic isotope effects

Potential energy, V

Reaction coordinate
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Calculation

number V for stretching of a C-H bond is about 3000 cm™.
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Calculation

number V for stretching of a C-H bond is about 3000 cm™.

Calculate the ratio
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The dynamics of molecular collisions

Electron transfer in homogeneous systems



