Focus 17: Chemical Kinetics

- The rates of chemical reactions
- Integrated rate laws
- Reactions approaching equilibrium
- The Arrhenius equation
- **Reaction mechanisms**

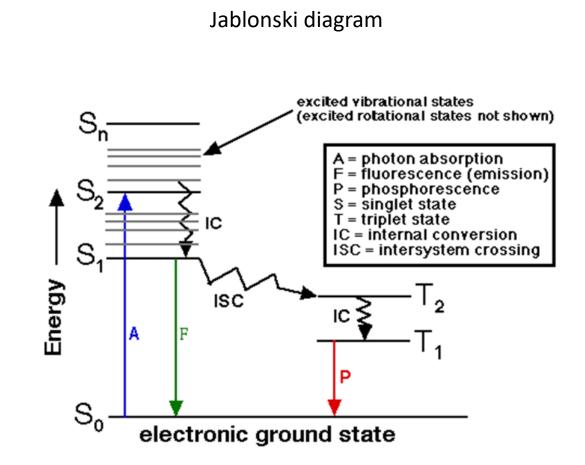
Photochemistry

Photochemical processes

Process	General form	Example
Ionization	$\mathrm{A}^{\star} \rightarrow \mathrm{A}^{\scriptscriptstyle +} + \mathrm{e}^{\scriptscriptstyle -}$	$NO^* \rightarrow NO^+ + e^-$
Electron transfer	$\begin{array}{c} A^{\star} + B \longrightarrow A^{+} + B^{-} \\ \text{or } A^{-} + B^{+} \end{array}$	$\operatorname{Ru}(\operatorname{bpy})_{3}^{2+\star} + \operatorname{Fe}^{3+} \to \operatorname{Ru}(\operatorname{bpy})_{3}^{3+} + \operatorname{Fe}^{2+}$
Dissociation	$A^* \rightarrow B + C$	$O_3^* \rightarrow O_2 + O$
	$\begin{array}{c} A^{*} + B - C \rightarrow \\ A + B + C \end{array}$	$Hg^* + CH_4 \rightarrow Hg + CH_3 + H$
Addition	$A^* + A^* \to B$	$\xrightarrow{*}$ + $\xrightarrow{*}$ and isomers
	$A^* + B \rightarrow AB$	$Hg^* + H_2 \rightarrow HgH + H$
Abstraction	$\begin{array}{c} A^{*} + B - C \rightarrow \\ A - B + C \end{array}$	$\mathrm{Hg}^{\star} + \mathrm{CH}_{3} \mathrm{-H} \rightarrow \mathrm{Hg}\mathrm{-CH}_{3} + \mathrm{H}$
Isomerization or rearrange- ment	$A^* \rightarrow A'$	

* Excited state.

Primary absorption	$S + hv \rightarrow S^*$	
Excited-state absorption	$S^* + hv \rightarrow S^{**}$	
	$\mathrm{T}^{\star} + h \nu \rightarrow \mathrm{T}^{\star \star}$	
Fluorescence	$S^* \rightarrow S + hv$	
Stimulated emission	$S^* + hv \rightarrow S + 2hv$	
Intersystem crossing (ISC)	$S^* \rightarrow T^*$	
Phosphorescence	$T^* \rightarrow S + hv$	
Internal conversion (IC)	$S^* \rightarrow S$	
Collision-induced emission	$\mathrm{S}^* + \mathrm{M} \rightarrow \mathrm{S} + \mathrm{M} + h v$	
Collisional deactivation	$S^{\star} + M \rightarrow S + M$	
	$T^{\star} + M \rightarrow S + M$	
Electronic energy transfer:		
Singlet-singlet	$S^* + S \rightarrow S + S^*$	
Triplet-triplet	$\mathrm{T}^{\star} + \mathrm{T} \rightarrow \mathrm{T} + \mathrm{T}^{\star}$	
Excimer formation	$S^* + S \rightarrow (SS)^*$	
Energy pooling		
Singlet-singlet	$\mathrm{S}^* + \mathrm{S}^* \to \mathrm{S}^{**} + \mathrm{S}$	
Triplet-triplet	$\mathrm{T}^{\star} + \mathrm{T}^{\star} \rightarrow \mathrm{S}^{\star \star} + \mathrm{S}$	


Excited-state absorption

Primary absorption

Fluorescence
Stimulated emission
Intersystem crossing (ISC)
Phosphorescence
Internal conversion (IC)
Collision-induced emission
Collisional deactivation
Electronic energy transfer:
Singlet-singlet
Triplet-triplet
Excimer formation
Energy pooling
Singlet-singlet

Triplet-triplet

$S + hv \rightarrow S^*$
$S^* + hv \rightarrow S^{**}$
$\mathrm{T}^* + h \nu \to \mathrm{T}^{**}$
$S^* \rightarrow S + hv$
$S^* + hv \rightarrow S + 2hv$
$S^* \rightarrow T^*$
$T^* \rightarrow S + hv$
$S^* \rightarrow S$
$S^* + M \rightarrow S + M + hv$
$S^{\star} + M \rightarrow S + M$
$T^* + M \rightarrow S + M$
$S^* + S \rightarrow S + S^*$
$\mathrm{T}^* + \mathrm{T} \rightarrow \mathrm{T} + \mathrm{T}^*$
$S^* + S \rightarrow (SS)^*$
$S^* + S^* \rightarrow S^{**} + S$
$\mathrm{T}^{\star} + \mathrm{T}^{\star} \rightarrow \mathrm{S}^{\star \star} + \mathrm{S}$

Primary quantum yield

$$\phi = \frac{\text{number of events}}{\text{number of photons absorbed}} = \frac{N_{\text{events}}}{N_{\text{abs}}}$$

Primary quantum yield

$$\phi = \frac{\text{number of events}}{\text{number of photons absorbed}} = \frac{N_{\text{events}}}{N_{\text{abs}}}$$

$$\phi = \frac{\text{rate of process}}{\text{rate of photon absorption}} = \frac{\nu}{I_{\text{abs}}}$$

In an experiment to determine the quantum yield of a photochemical reaction, the absorbing substance was exposed to light of wavelength 490 nm from a 1.00 W laser source for 2700s, with 60 per cent of the incident light being absorbed. As a result of irradiation, 3.44 mmol of the absorbing substance decomposed. What is the primary quantum yield?

In an experiment to determine the quantum yield of a photochemical reaction, the absorbing substance was exposed to light of wavelength 490 nm from a 1.00 W laser source for 2700 s, with 60 per cent of the incident light being absorbed. As a result of irradiation, 3.44 mmol of the absorbing substance decomposed. What is the primary quantum yield?

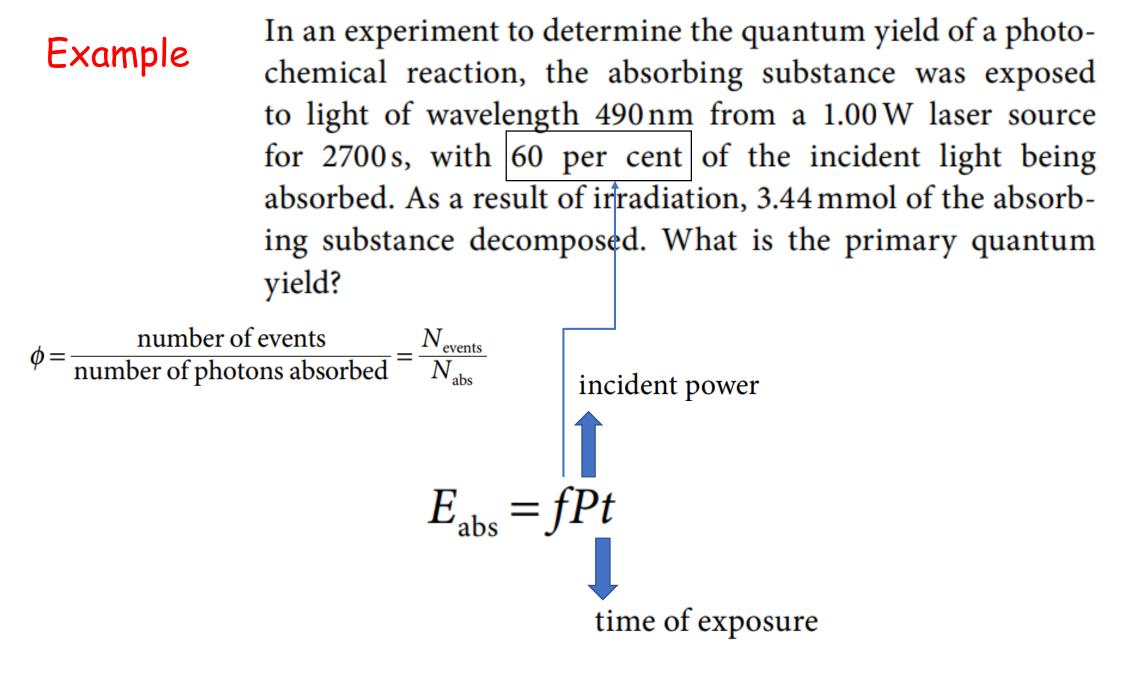
 $\phi = \frac{\text{number of events}}{\text{number of photons absorbed}} = \frac{N_{\text{events}}}{N_{\text{abs}}}$

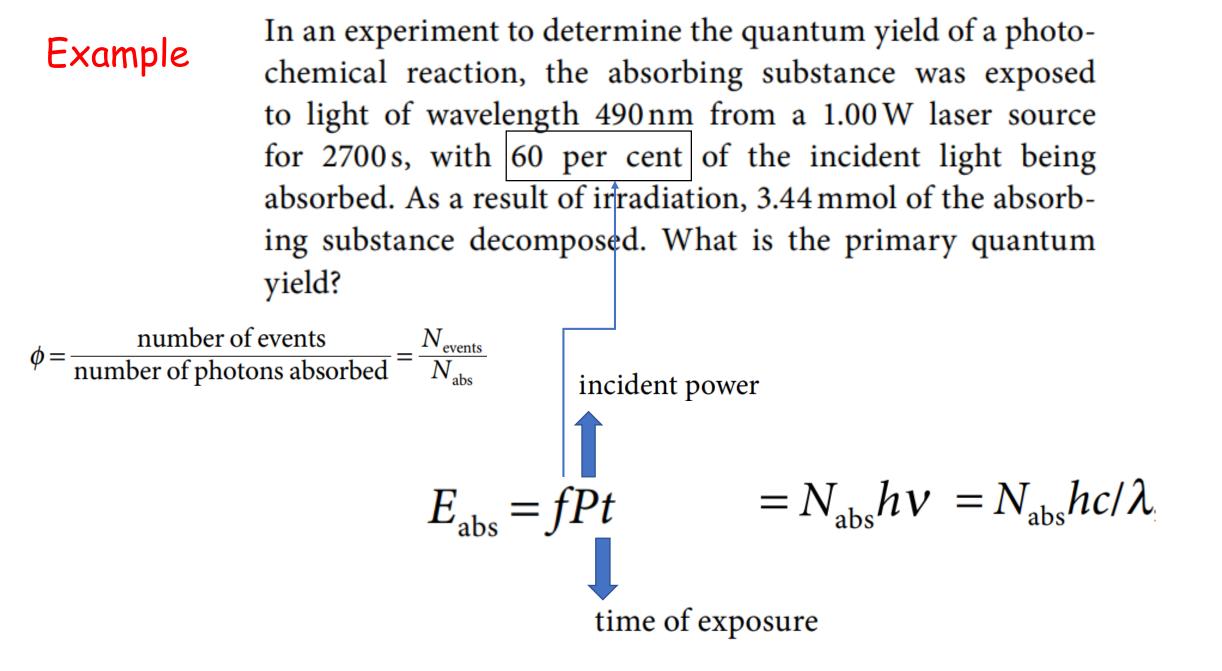
In an experiment to determine the quantum yield of a photochemical reaction, the absorbing substance was exposed to light of wavelength 490 nm from a 1.00 W laser source for 2700 s, with 60 per cent of the incident light being absorbed. As a result of irradiation, 3.44 mmol of the absorbing substance decomposed. What is the primary quantum yield?

 $\phi = \frac{\text{number of events}}{\text{number of photons absorbed}} = \frac{N_{\text{events}}}{N_{\text{abs}}}$

 $N_{events} = N_{decomposed}$

$$N_{\rm decomposed} = (3.44 \times 10^{-3} \,{\rm mol}) \times (6.022 \times 10^{23} \,{\rm mol}^{-1})$$


In an experiment to determine the quantum yield of a photochemical reaction, the absorbing substance was exposed to light of wavelength 490 nm from a 1.00 W laser source for 2700 s, with 60 per cent of the incident light being absorbed. As a result of irradiation, 3.44 mmol of the absorbing substance decomposed. What is the primary quantum yield?


 $\phi = \frac{\text{number of events}}{\text{number of photons absorbed}} = \frac{N_{\text{events}}}{N_{\text{abs}}}$

$$E_{abs} = fPt$$

In an experiment to determine the quantum yield of a photochemical reaction, the absorbing substance was exposed to light of wavelength 490 nm from a 1.00 W laser source for 2700 s, with 60 per cent of the incident light being absorbed. As a result of irradiation, 3.44 mmol of the absorbing substance decomposed. What is the primary quantum yield?

 $\phi = \frac{\text{number of events}}{\text{number of photons absorbed}} = \frac{N_{\text{events}}}{N_{\text{abs}}}$ incident power $E_{\text{abs}} = fPt$ itime of exposure

In an experiment to determine the quantum yield of a photochemical reaction, the absorbing substance was exposed to light of wavelength 490 nm from a 1.00 W laser source for 2700 s, with 60 per cent of the incident light being absorbed. As a result of irradiation, 3.44 mmol of the absorbing substance decomposed. What is the primary quantum yield?

$$fPt = N_{abs} \left(\frac{hc}{\lambda}\right)$$
$$\phi = \frac{N_{decomposed}}{N_{abs}} = \frac{N_{decomposed}hc}{fPt\lambda}$$

 $fPt = N_{abs} \left(\frac{hc}{\lambda} \right)$

In an experiment to determine the quantum yield of a photochemical reaction, the absorbing substance was exposed to light of wavelength 490 nm from a 1.00 W laser source for 2700 s, with 60 per cent of the incident light being absorbed. As a result of irradiation, 3.44 mmol of the absorbing substance decomposed. What is the primary quantum yield?

=0.52

 $N_{\text{decomposed}} = (3.44 \times 10^{-3} \text{ mol}) \times (6.022 \times 10^{23} \text{ mol}^{-1})$

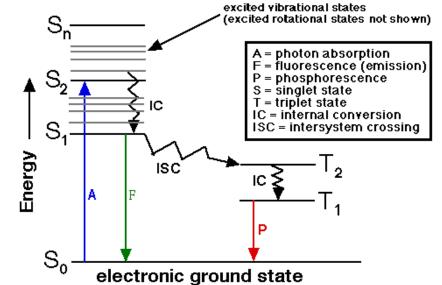
$$\phi = \frac{(2.07...\times10^{21})\times(6.626\times10^{-34}\,\mathrm{Js})\times(2.998\times10^{8}\,\mathrm{m\,s^{-1}})}{0.60\times(1.00\,\mathrm{J\,s^{-1}})\times(2700\,\mathrm{s})\times(4.90\times10^{-7}\,\mathrm{m})}$$

$$\phi = \frac{N_{\text{decomposed}}}{N_{\text{abs}}} = \frac{N_{\text{decomposed}}hc}{fPt\lambda}$$

Primary quantum yield

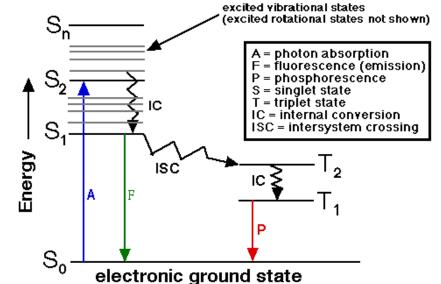
$$\phi = \frac{\text{number of events}}{\text{number of photons absorbed}} = \frac{N_{\text{events}}}{N_{\text{abs}}} \qquad \phi = \frac{\text{rate of process}}{\text{rate of photon absorption}} = \frac{\nu}{I_{\text{abs}}}$$

Primary quantum yield


$$\phi = \frac{\text{number of events}}{\text{number of photons absorbed}} = \frac{N_{\text{events}}}{N_{\text{abs}}} \qquad \phi = \frac{\text{rate of process}}{\text{rate of photon absorption}} = \frac{\nu}{I_{\text{abs}}}$$

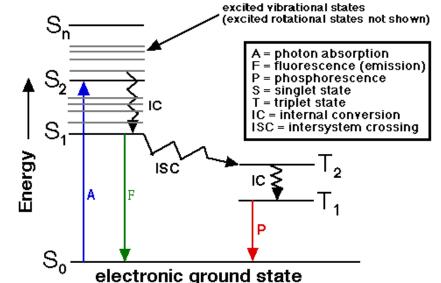
$$\sum_{i} \phi_{i} = \sum_{i} \frac{\nu_{i}}{I_{abs}} = \frac{1}{I_{abs}} \sum_{i} \nu_{i} = 1$$

The sum of all primary quantum yields for all events must be equal to 1


In the absence of a chemical reaction:

Absorption:	$S + hv_i \rightarrow S^*$	$v_{\rm abs} = I_{\rm abs}$
Fluorescence:	$S^* \rightarrow S + hv_f$	$v_{\rm F} = k_{\rm F}[{\rm S}^*]$
Internal conversion:	$S^* \rightarrow S$	$v_{\rm IC} = k_{\rm IC}[S^*]$
Intersystem crossing:	$S^* \rightarrow T^*$	$v_{\rm ISC} = k_{\rm ISC} [S^*]$

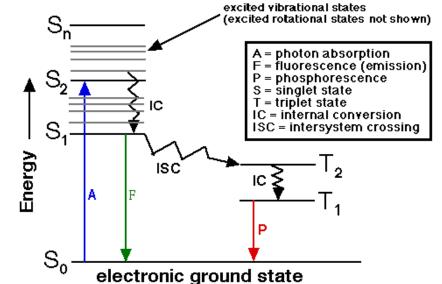
In the absence of a chemical reaction:


Absorption:	$S + hv_i \rightarrow S^*$	$v_{\rm abs} = I_{\rm abs}$
Fluorescence:	$S^* \rightarrow S + hv_f$	$v_{\rm F} = k_{\rm F}[{\rm S}^*]$
Internal conversion:	$S^* \rightarrow S$	$v_{\rm IC} = k_{\rm IC}[S^*]$
Intersystem crossing:	$S^* \rightarrow T^*$	$v_{\rm ISC} = k_{\rm ISC} [S^*]$

Rate of formation of $S^* = I_{abs}$

In the absence of a chemical reaction:

Absorption:	$S + hv_i \rightarrow S^*$	$v_{\rm abs} = I_{\rm abs}$
Fluorescence:	$S^* \rightarrow S + hv_f$	$v_{\rm F} = k_{\rm F}[{\rm S}^{\star}]$
Internal conversion:	$S^* \rightarrow S$	$v_{\rm IC} = k_{\rm IC}[S^*]$
Intersystem crossing:	$S^* \rightarrow T^*$	$v_{\rm ISC} = k_{\rm ISC} [S^*]$

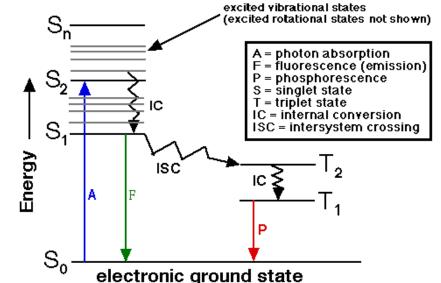


Rate of formation of $S^* = I_{abs}$

Rate of disappearance of $S^* = k_F[S^*] + k_{ISC}[S^*] + k_{IC}[S^*]$

In the absence of a chemical reaction:

Absorption:	$S + hv_i \rightarrow S^*$	$v_{\rm abs} = I_{\rm abs}$
Fluorescence:	$S^* \rightarrow S + hv_f$	$v_{\rm F} = k_{\rm F}[{\rm S}^*]$
Internal conversion:	$S^* \rightarrow S$	$v_{\rm IC} = k_{\rm IC}[S^*]$
Intersystem crossing:	$S^* \rightarrow T^*$	$v_{\rm ISC} = k_{\rm ISC} [S^*]$



Rate of formation of $S^* = I_{abs}$

Rate of disappearance of S^{*} = $k_F[S^*] + k_{ISC}[S^*] + k_{IC}[S^*]$ = $(k_F + k_{ISC} + k_{IC})[S^*]$

In the absence of a chemical reaction:

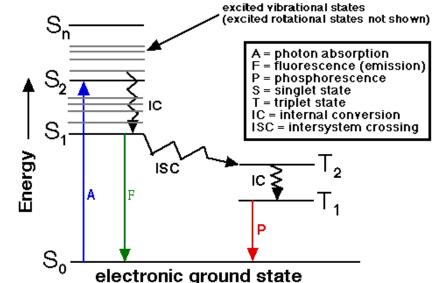
Absorption:	$S + hv_i \rightarrow S^*$	$v_{\rm abs} = I_{\rm abs}$
Fluorescence:	$S^* \rightarrow S + hv_f$	$v_{\rm F} = k_{\rm F}[{\rm S}^*]$
Internal conversion:	$S^* \rightarrow S$	$v_{\rm IC} = k_{\rm IC}[S^*]$
Intersystem crossing:	$S^* \rightarrow T^*$	$v_{\rm ISC} = k_{\rm ISC} [S^*]$

Rate of formation of $S^* = I_{abs}$

Rate of disappearance of $S^* = k_F[S^*] + k_{ISC}[S^*] + k_{IC}[S^*]$ = $(k_F + k_{ISC} + k_{IC})[S^*]$ The excited state decays by a first-order process!

Lifetime of an excited state

If you excite a big group of molecules at time zero, the lifetime τ is how long, on average, a molecule stays excited before relaxing (by fluorescence, internal conversion, ISC, etc.).


Lifetime of an excited state

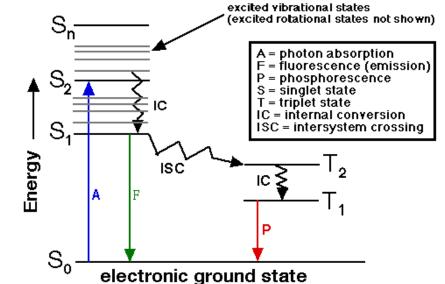
If you excite a big group of molecules at time zero, the lifetime τ is how long, on average, a molecule stays excited before relaxing (by fluorescence, internal conversion, ISC, etc.).

	Lifetime $ au$
First-order	Average survival time of molecules ($ au=1/k$)
Zero-order	$ au$ linked to half-depletion ($[A]_0/2k$)
Second-order	Lifetime depends on $[A]_0$

In the absence of a chemical reaction:

Absorption:	$S + hv_i \rightarrow S^*$	$v_{\rm abs} = I_{\rm abs}$
Fluorescence:	$S^* \rightarrow S + hv_f$	$v_{\rm F} = k_{\rm F}[{\rm S}^*]$
Internal conversion:	$S^* \rightarrow S$	$v_{\rm IC} = k_{\rm IC}[S^*]$
Intersystem crossing:	$S^* \rightarrow T^*$	$v_{\rm ISC} = k_{\rm ISC} [S^*]$

Rate of formation of $S^* = I_{abs}$

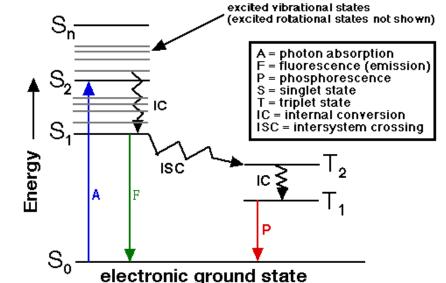

Rate of disappearance of $S^* = k_F[S^*] + k_{ISC}[S^*] + k_{IC}[S^*]$ = $(k_F + k_{ISC} + k_{IC})[S^*]$ The excited state decays by a first-order process!

first-order exponential decay has a direct relationship between the decay rate and the lifetime

$$au_0 = rac{1}{k_{ ext{total}}} \quad ext{or} \quad k_{ ext{total}} = rac{1}{ au_0}$$

In the absence of a chemical reaction:

Absorption:	$S + hv_i \rightarrow S^*$	$v_{\rm abs} = I_{\rm abs}$
Fluorescence:	$S^* \rightarrow S + hv_f$	$v_{\rm F} = k_{\rm F}[{\rm S}^*]$
Internal conversion:	$S^{\star} \rightarrow S$	$v_{\rm IC} = k_{\rm IC}[S^*]$
Intersystem crossing:	$S^* \rightarrow T^*$	$v_{\rm ISC} = k_{\rm ISC} [S^*]$


Rate of formation of $S^* = I_{abs}$

Rate of disappearance of S^{*} = $k_F[S^*] + k_{ISC}[S^*] + k_{IC}[S^*]$ = $(k_F + k_{ISC} + k_{IC})[S^*]$ Decay–When the light is turned off,

 $[S^*](t) = [S^*]_0 e^{-t/\tau_0}$

In the absence of a chemical reaction:

Absorption:	$S + hv_i \rightarrow S^*$	$v_{\rm abs} = I_{\rm abs}$
Fluorescence:	$S^* \rightarrow S + hv_f$	$v_{\rm F} = k_{\rm F}[{\rm S}^{\star}]$
Internal conversion:	$S^* \rightarrow S$	$v_{\rm IC} = k_{\rm IC}[S^*]$
Intersystem crossing:	$S^* \rightarrow T^*$	$v_{\rm ISC} = k_{\rm ISC}[S^*]$

Rate of formation of $S^* = I_{abs}$

Rate of disappearance of S^{*} = $k_{\rm F}$ [S^{*}] + $k_{\rm ISC}$ [S^{*}] + $k_{\rm IC}$ [S^{*}] = $(k_{\rm F} + k_{\rm ISC} + k_{\rm IC})$ [S^{*}] Decay–When the light is turned off,

$$[S^*](t) = [S^*]_0 e^{-t/\tau_0}$$
$$\tau_0 = \frac{1}{k_{\rm F} + k_{\rm ISC} + k_{\rm IC}} = \frac{1}{k_{\rm total}}$$

Observed lifetime of the excited singlet state

Quantum yield of fluorescence

$$\phi_{\mathrm{F},0} = k_{\mathrm{F}} \tau_{0}$$

$$\tau_{0} = \frac{1}{k_{\mathrm{F}} + k_{\mathrm{ISC}} + k_{\mathrm{IC}}}$$

 $\phi_{\rm F,0} = \frac{k_{\rm F}}{k_{\rm F} + k_{\rm ISC} + k_{\rm IC}}$

Quantum yield of fluorescence

Quantum yield of fluorescence

Rate x time

$$\phi_{\mathrm{F},0} = k_{\mathrm{F}} \tau_{0}$$

$$\tau_{0} = \frac{1}{k_{\mathrm{F}} + k_{\mathrm{ISC}} + k_{\mathrm{IC}}}$$

 $\phi_{\rm F,0} = \frac{k_{\rm F}}{k_{\rm F} + k_{\rm ISC} + k_{\rm IC}}$

Quantum yield of fluorescence

The addition of a quencher, Q, opens an additional channel for deactivation of S*:

Quenching: $S^* + Q \rightarrow S + Q$ $\nu_Q = k_Q[Q][S^*]$

The addition of a quencher, Q, opens an additional channel for deactivation of S*:

Quenching: $S^* + Q \rightarrow S + Q$ $\nu_Q = k_Q[Q][S^*]$

$$\frac{d[S^*]}{dt} = I_{abs} - (k_F + k_{ISC} + k_{IC} + k_Q[Q])[S^*] \approx 0$$

$$\phi_{\rm F} = \frac{k_{\rm F}}{k_{\rm F} + k_{\rm ISC} + k_{\rm IC} + k_{\rm Q}[Q]}$$

The addition of a quencher, Q, opens an additional channel for deactivation of S*:

Quenching:
$$S^* + Q \rightarrow S + Q$$
 $\nu_Q = k_Q[Q][S^*]$

$$\frac{d[S^*]}{dt} = I_{abs} - (k_F + k_{ISC} + k_{IC} + k_Q[Q])[S^*] \approx 0$$

$$\phi_{\rm F} = \frac{k_{\rm F}}{k_{\rm F} + k_{\rm ISC} + k_{\rm IC} + k_{\rm Q}[Q]}$$

$$\phi_{\rm F,0} = \frac{k_{\rm F}}{k_{\rm F} + k_{\rm ISC} + k_{\rm IC}}$$

Without Q

The addition of a quencher, Q, opens an additional channel for deactivation of S*:

Quenching:
$$S^* + Q \rightarrow S + Q$$
 $\nu_Q = k_Q[Q][S^*]$

The ratio of the quantum yields

$$\frac{\mathbf{l}[S^*]}{dt} = I_{abs} - (k_F + k_{ISC} + k_{IC} + k_Q[Q])[S^*] \approx 0$$

$$\phi_{\rm F} = \frac{k_{\rm F}}{k_{\rm F} + k_{\rm ISC} + k_{\rm IC} + k_{\rm Q}[Q]}$$

$$\frac{\phi_{\rm F,0}}{\phi_{\rm F}} = \frac{\text{without } Q}{\text{with } Q}$$

 $\phi_{\rm F,0} = \frac{k_{\rm F}}{k_{\rm F} + k_{\rm ISC} + k_{\rm IC}}$

Without Q

The addition of a quencher, Q, opens an additional channel for deactivation of S*:

Quenching: $S^* + Q \rightarrow S + Q$ $\nu_Q = k_Q[Q][S^*]$

$$\frac{d[S^*]}{dt} = I_{abs} - (k_F + k_{ISC} + k_{IC} + k_Q[Q])[S^*] \approx 0 \qquad \frac{\phi_{F,0}}{\phi_F} = \frac{1}{k_F}$$

The ratio of the quantum yields $\frac{\phi_{\text{F},0}}{\phi_{\text{F}}} = \frac{k_{\text{F}}}{k_{\text{F}} + k_{\text{ISC}} + k_{\text{IC}}} \times \frac{k_{\text{F}} + k_{\text{ISC}} + k_{\text{IC}} + k_{\text{Q}}[Q]}{k_{\text{F}}}$

With and without a Q

$$\phi_{\rm F,0} = \frac{k_{\rm F}}{k_{\rm F} + k_{\rm ISC} + k_{\rm IC}}$$

 $\phi_{\rm F} = \frac{\kappa_{\rm F}}{k_{\rm F} + k_{\rm ISC} + k_{\rm IC} + k_{\rm O}[Q]}$

Without Q

d

The addition of a quencher, Q, opens an additional channel for deactivation of S*:

Quenching: $S^* + Q \rightarrow S + Q$ $v_Q = k_Q[Q][S^*]$

$$\frac{[S^*]}{dt} = I_{abs} - (k_F + k_{ISC} + k_{IC} + k_Q[Q])[S^*] \approx 0$$

$$\phi_F = \frac{k_F}{k_F + k_{ISC} + k_{IC} + k_Q[Q]}$$

The ratio of the quantum yields

$$\frac{\phi_{F,0}}{\phi_F} = \frac{k_F}{k_F + k_{ISC} + k_{IC}} \times \frac{k_F + k_{ISC} + k_{IC} + k_Q[Q]}{k_F}$$

$$= \frac{k_F + k_{ISC} + k_{IC} + k_Q[Q]}{k_F + k_{ISC} + k_{IC}}$$

With and

without a Q

The addition of a quencher, Q, opens an additional channel for deactivation of S*:

Quenching: $S^* + Q \rightarrow S + Q$ $v_Q = k_Q[Q][S^*]$

$$\frac{d[S^*]}{dt} = I_{abs} - (k_F + k_{ISC} + k_{IC} + k_Q[Q])[S^*] \approx 0$$

$$\phi_F = \frac{k_F}{k_F + k_{ISC} + k_{IC} + k_Q[Q]}$$

The ratio of the quantum yields

$$\frac{\phi_{F,0}}{\phi_F} = \frac{k_F}{k_F + k_{ISC} + k_{IC}} \times \frac{k_F + k_{ISC} + k_{IC} + k_Q[Q]}{k_F}$$

$$= \frac{k_F + k_{ISC} + k_{IC} + k_Q[Q]}{k_F + k_{ISC} + k_{IC}}$$

$$= 1 + \frac{k_Q}{k_F + k_{ISC} + k_{IC}} [Q]$$

With and

without a Q

Quenching

The addition of a quencher, Q, opens an additional channel for deactivation of S*:

Quenching:
$$S^* + Q \rightarrow S + Q$$
 $\nu_Q = k_Q[Q][S^*]$

$$\frac{d[S^*]}{dt} = I_{abs} - (k_F + k_{ISC} + k_{IC} + k_Q[Q])[S^*] \approx 0$$

$$\phi_{\rm F} = \frac{k_{\rm F}}{k_{\rm F} + k_{\rm ISC} + k_{\rm IC} + k_{\rm Q}[Q]}$$

$$\tau_0 = \frac{1}{k_{\rm F} + k_{\rm ISC} + k_{\rm IC}}$$

Observed lifetime of the excited singlet state

The ratio of the quantum yields

$$\frac{\phi_{F,0}}{\phi_F} = \frac{k_F}{k_F + k_{ISC} + k_{IC}} \times \frac{k_F + k_{ISC} + k_{IC} + k_Q[Q]}{k_F}$$

$$= \frac{k_F + k_{ISC} + k_{IC} + k_Q[Q]}{k_F + k_{ISC} + k_{IC}}$$

$$= 1 + \frac{k_Q}{k_F + k_{ISC} + k_{IC}} [Q]$$

Quenching

The addition of a quencher, Q, opens an additional channel for deactivation of S*:

Quenching:
$$S^* + Q \rightarrow S + Q$$
 $\nu_Q = k_Q[Q][S^*]$

$$\frac{d[S^*]}{dt} = I_{abs} - (k_F + k_{ISC} + k_{IC} + k_Q[Q])[S^*] \approx 0$$

$$\phi_{\rm F} = \frac{k_{\rm F}}{k_{\rm F} + k_{\rm ISC} + k_{\rm IC} + k_{\rm Q}[Q]}$$

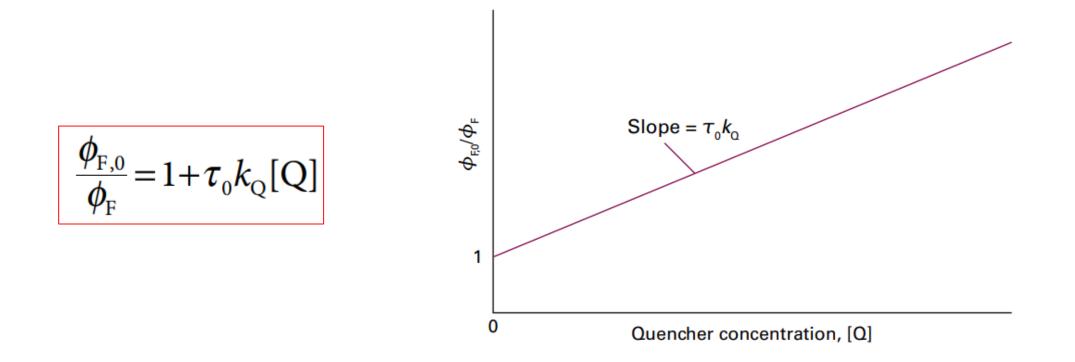
$$\tau_0 = \frac{1}{k_{\rm F} + k_{\rm ISC} + k_{\rm IC}}$$

Observed lifetime of the excited singlet state

The ratio of the quantum yields

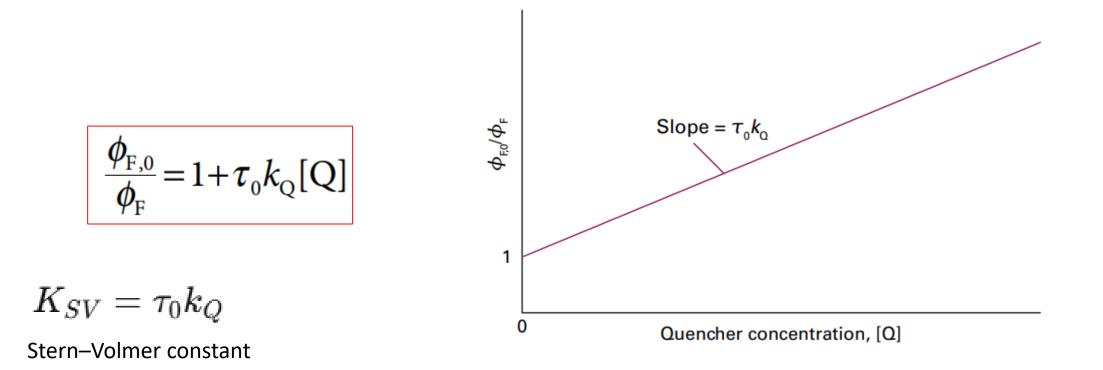
$$\frac{\phi_{F,0}}{\phi_F} = \frac{k_F}{k_F + k_{ISC} + k_{IC}} \times \frac{k_F + k_{ISC} + k_{IC} + k_Q[Q]}{k_F}$$

$$= \frac{k_F + k_{ISC} + k_{IC} + k_Q[Q]}{k_F + k_{ISC} + k_{IC}}$$


$$= 1 + \frac{k_Q}{k_F + k_{ISC} + k_{IC}} [Q]$$

$$\frac{\phi_{\mathrm{F},0}}{\phi_{\mathrm{F}}} = 1 + \tau_0 k_{\mathrm{Q}}[\mathrm{Q}]$$

Stern–Volmer equation


relates fluorescence quenching to the concentration of quencher

Stern-Volmer plot

A Stern-Volmer plot is a useful tool for studying fluorescence quenching and provides valuable information about the interaction between a fluorophore and a quencher molecule.

Stern-Volmer plot

A Stern-Volmer plot is a useful tool for studying fluorescence quenching and provides valuable information about the interaction between a fluorophore and a quencher molecule.

Quenching

Three common mechanisms for bimolecular quenching of an excited singlet (or triplet) state are:

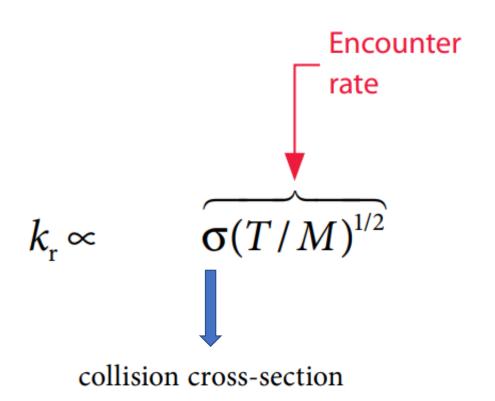
Collisional deactivation: $S^* + Q \rightarrow S + Q$ Resonance energy transfer: $S^* + Q \rightarrow S + Q^*$ Electron transfer: $S^* + Q \rightarrow S^{+/-} + Q^{-/+}$

resonance energy transfer is efficient when the donor and acceptor are separated by a short distance (of the order of nanometres).

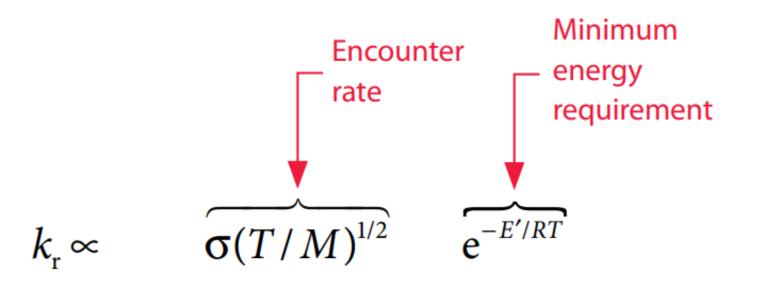
Focus 18: Reaction Dynamics

Collision theory

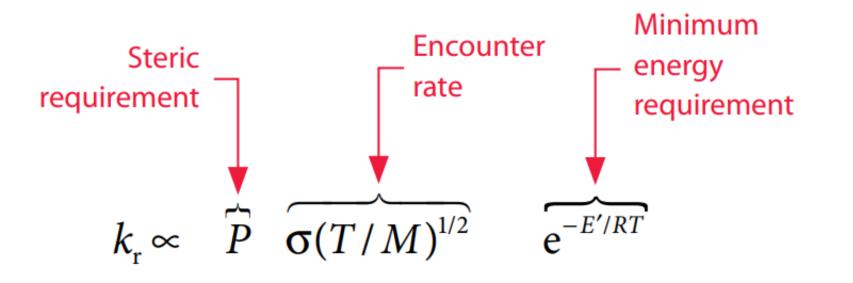
Diffusion-controlled reactions


Transition-state theory

The dynamics of molecular collisions

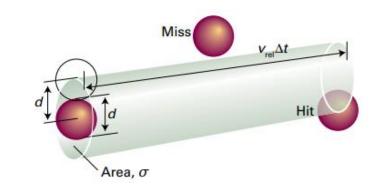

Electron transfer in homogeneous systems

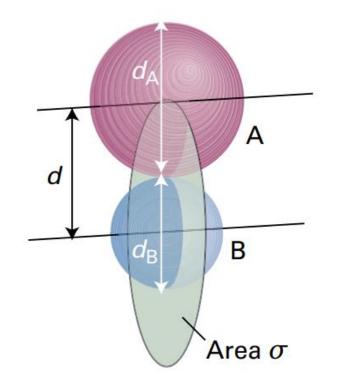
$$A + B \rightarrow P \quad v = k_r[A][B]$$


$$A + B \rightarrow P \quad v = k_r[A][B]$$

$$A + B \rightarrow P \quad v = k_r[A][B]$$

$$A + B \rightarrow P \quad v = k_r[A][B]$$

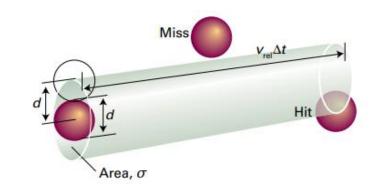

Collision density in gases

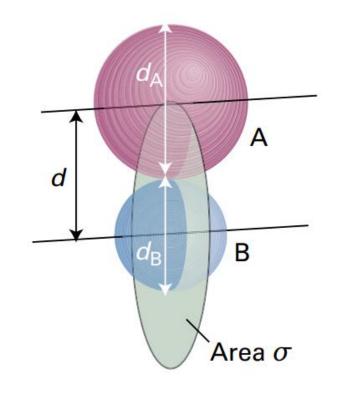

 Z_{AB} is the collision frequency per unit volume

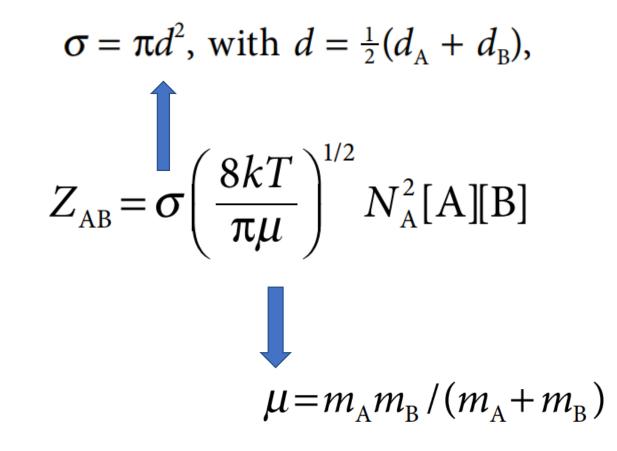
$$Z_{\rm AB} = \sigma \left(\frac{8kT}{\pi\mu}\right)^{1/2} N_{\rm A}^2 [\rm A][\rm B]$$

Collision density in gases

 Z_{AB} is the collision frequency per unit volume




$$\sigma = \pi d^2, \text{ with } d = \frac{1}{2}(d_A + d_B),$$

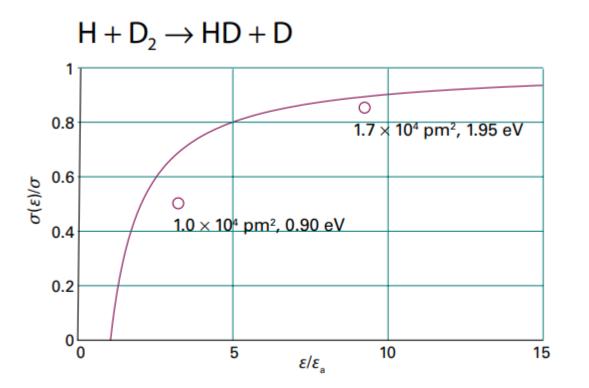

$$Z_{AB} = \sigma \left(\frac{8kT}{\pi\mu}\right)^{1/2} N_A^2 [A][B]$$

Collision density in gases

 $\rm Z_{AB}$ is the collision frequency per unit volume

Collision rate in gases

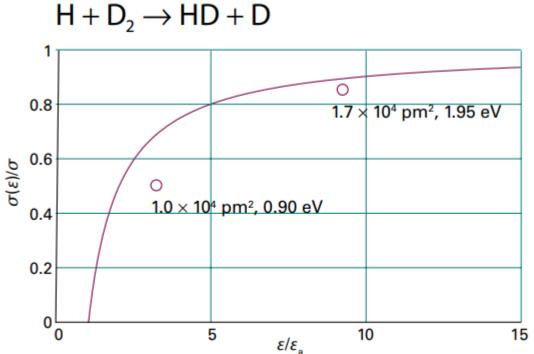
For A-A collision

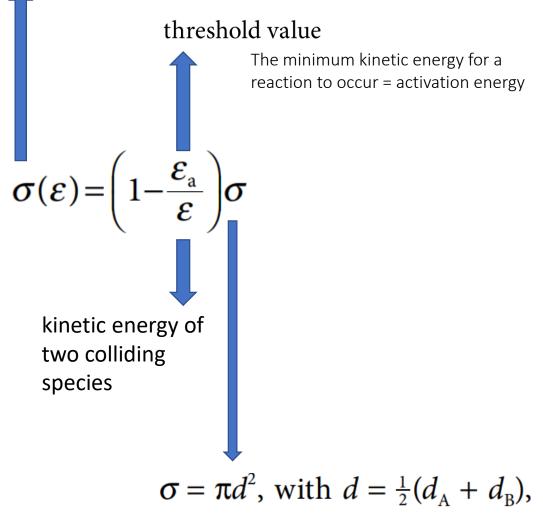

$$Z_{AA} = \frac{1}{2} \sigma \left(\frac{16kT}{\pi m_A}\right)^{1/2} N_A^2 [A]^2$$
$$= \sigma \left(\frac{4kT}{\pi m_A}\right)^{1/2} N_A^2 [A]^2$$

Collision density [identical molecules]

Factor of 1/2 has been introduced to avoid double counting of collisions

$$\mu = m_{\rm A} m_{\rm B} / (m_{\rm A} + m_{\rm B}) \quad \Box \Longrightarrow \quad \mu = \frac{1}{2} m_{\rm A}$$


The energy requirement

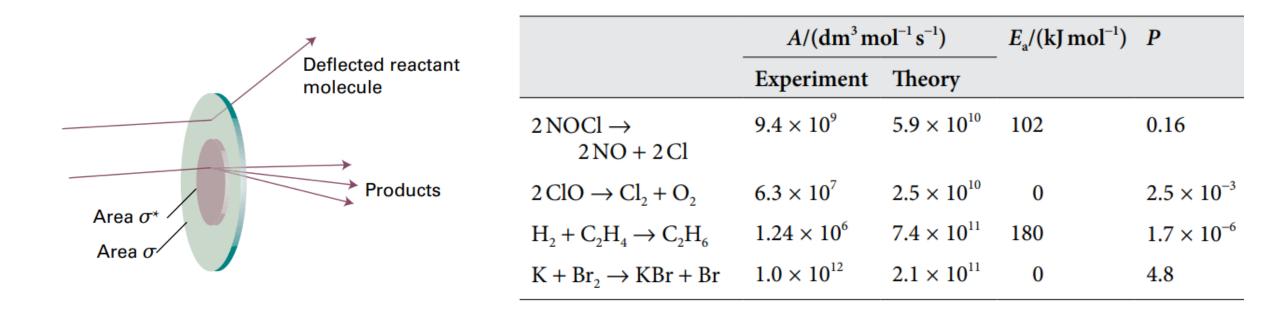

The variation of the reactive cross-section with energy

The energy requirement

energy-dependent collision cross-section threshold value

The variation of the reactive cross-section with energy

Simple collisional cross-section


Steric requirement

The steric factor is an adjustment that takes into account the orientational requirements for a successful collision

Steric requirement

The steric factor is an adjustment that takes into account the orientational requirements for a successful collision

Steric requirement

The steric factor is an adjustment that takes into account the orientational requirements for a successful collision

Reasonably good alignment; moderate steric demand

Very poor alignment needed; hard collision geometry

Extremely specific orbital orientation needed for new bond formation.

Very large P (>1) because of long-range ionic attraction helping collisions

	$A/(dm^3 mol^{-1} s^{-1})$		$E_{\rm a}/({\rm kJmol^{-1}})$	Р
	Experiment	Theory		
$2 \operatorname{NOCl} \rightarrow 2 \operatorname{NO} + 2 \operatorname{Cl}$	9.4×10^{9}	5.9×10^{10}	102	0.16
$2 \operatorname{ClO} \rightarrow \operatorname{Cl}_2 + \operatorname{O}_2$	6.3×10^{7}	$2.5 imes 10^{10}$	0	$2.5 imes 10^{-3}$
$\mathrm{H_2} + \mathrm{C_2H_4} \rightarrow \mathrm{C_2H_6}$	1.24×10^{6}	7.4×10^{11}	180	$1.7 imes 10^{-6}$
$K + Br_2 \rightarrow KBr + Br$	1.0×10^{12}	2.1×10^{11}	0	4.8