Focus 17: Chemical Kinetics
The rates of chemical reactions
Integrated rate laws
Reactions approaching equilibrium
The Arrhenius equation

Reaction mechanisms

Photochemistry



Elementary reactions
Elementary reactions are the simplest types of chemical reactions.

They occur in a single step and involve a direct transformation of reactants
into products at the molecular level.

Has only one transition state.



Elementary reactions

H + BI‘E — HBr + Br bimolecular reaction



Elementary reactions

Molecularity =2

number of molecules coming together to react
H + Br, - HBr + Br | |
bimolecular reaction



Elementary reactions

Molecularity = overall order = 2

H + Br, - HBr + Br

bimolecular reaction



Elementary reactions

The rate law of a unimolecular elementary reaction is first-
order in the reactant:
dlA] _

A—P T——kr[A]



Elementary reactions

The rate law of a unimolecular elementary reaction is first-
order in the reactant:
dlA] _

A—P T——kr[A]

An elementary bimolecular reaction has a second-order
rate law:
d[A]



Consecutive elementary reactions
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Consecutive elementary reactions ASISP

¢ it's neither the reactant nor it is a product
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Consecutive elementary reactions ASISP
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Consecutive elementary reactions

dt

rate of unimolecular decomposition of A d[A] —_ k [ A]
d
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Consecutive elementary reactions

rate of unimolecular decomposition of A d[A] _
dt o ka [A]
. d(I]
The net rate of formation of I — _
dt ka [A] kb [I]
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dt




Consecutive elementary reactions

rate of unimolecular decomposition of A

The net rate of formation of I

product P

initial
d[A]
—qr = kA
dn
E - ka [A] - kb[I]
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Consecutive elementary reactions

initial
rate of unimolecular decomposition of A d[A]
i =kl
dt
The net rate of formation of I d[l]

dr = ka [A]— kb[I]

product P @ _




Consecutive elementary reactions

rate of unimolecular decomposition of A

The net rate of formation of I

product P
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Consecutive elementary reactions ASISP

initial ~ [A], 0 0

rate of unimolecular decomposition of A d[A] —_k [ A] [ A] — [ A]{, e_ka.t
dt 2
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The net rate of formation of I _ . k,t
trate of format 5 =k [Al- k1] 1 +k1=k[A]e
product P d[P] 1
dr Rl =7 —e)[Al,




Consecutive elementary reactions ASISP

initial ~ [A], 0 0

rate of unimolecular decomposition of A d[A] —_k [ A] [ A] — [ A]{, e_ka.t
dt 2
. d(I] d[I] .
The net rate of formation of I _ . k,t
trate of format 5 =k [Al- k1] 1 +k1=k[A]e
product P d[P] 1
dr Rl =7 —e)[Al,

Atall times [A] + [1] + [P] = [A], P = {1+ kae_f:’;be_kat }[A]D



Consecutive elementary reactions
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Consecutive elementary reactions ASISP
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Consecutive elementary reactions

At what time will I be present in greatest concentration? M k, Ki_ o R\ A
[[=1—5 (e —e™)[A]
b a
1
0.8 /ff_-
Z° —
% 0.6 \ /\\ /
3 / |
fall N
A T
% 5 10 15 20 25 30

Time, k.t



Consecutive elementary reactions
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Consecutive elementary reactions
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S'I'eady-s'l'a'l'e approximqﬁon Concentrations of intermediates remain small
and hardly change during most of the course of

the reaction



Concentrationi, [J]

Steady-state approximation
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Concentrations of intermediates remain small

and hardly change during most of the course of
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Concentrationi, [J]

Steady-state approximation

AS 15 p

Reactants Products

Intermediates

Tlme, t

Concentrations of intermediates remain small

and hardly change during most of the course of
the reaction

S
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d[1]
E = ka [A] _ kb [I]



Concentrationi, [J]

Steady-state approximation

A—>I—>P

Reactants Products

Intermediates

Tlme, t

Concentrations of intermediates remain small
and hardly change during most of the course of
the reaction
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Concentrationi, [J]

Steady-state approximation
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Concentrationi, [J]

Steady-state approximation

A—>I—>P
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Concentrations of intermediates remain small
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the reaction

S
a =Y

dn _k
G =RIAI-kD =7 A]

b

dP] , 4 _
7 =kl = k[A]
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Concentrationi, [J]
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Rate determining step (RDS)

The slowest step in a reaction mechanism, which determines the overall rate of
the reaction



Rate determining step (RDS)

The slowest step in a reaction mechanism, which determines the overall rate of
the reaction
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Progress of reaction



Rate determining step (RDS)

The slowest step in a reaction mechanism, which determines the overall rate of
the reaction

Smallest rate constant

Highest activation energy
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Question

A reaction between NO and H, occurs in the following three-step process:
NO+ NO — NyO, (fast)
NyOs + Hy — NoO + HyO (slow)
NyO + Hy — Ny + HyO (fast)

a. What is the rate determining step?
b. Write the balanced equation for the overall reaction.
c. Are there any intermediates? If so, state what they are.



Question

A reaction between NO and H, occurs in the following three-step process:
NO+ NO — NyO, (fast)
NyOs + Hy — NoO + HyO (slow)
NyO + Hy — Ny + HyO (fast)

a. What is the rate determining step?
b. Write the balanced equation for the overall reaction.
c. Are there any intermediates? If so, state what they are.
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Question

A reaction between NO and H, occurs in the following three-step process:
NO+ NO — NyO, (fast)
NyOs + Hy — NoO + HyO (slow)
NyO + Hy — Ny + HyO (fast)

a. What is the rate determining step?
b. Write the balanced equation for the overall reaction.
c. Are there any intermediates? If so, state what they are.

NyOy + Hy — NyO + HyO

ONO + 2H, — Ny + 2H,0.



Question

A reaction between NO and H, occurs in the following three-step process:
NO+ NO — NyO, (fast)
NyOs + Hy — NoO + HyO (slow)
NyO + Hy — Ny + HyO (fast)

a. What is the rate determining step?
b. Write the balanced equation for the overall reaction.
c. Are there any intermediates? If so, state what they are.

NoOy + Hy — NoO + HyO
2NO +2Hy — Ny + 2H50.

NEOQ and NEO
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Pre-equilibria A p—fsi_&sp k' > k,
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Pre-equilibria
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Pre-equilibria

K=[Im

1= AIE] = 5{A][B]
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Lindemann-Hinshelwood mechanism
becomes energetically excited

A+A — A*+A

d[A*] )
dr = ka [A]




Lindemann-Hinshelwood mechanism

becomes energetically excited
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Lindemann-Hinshelwood mechanism

. Products

becomes energetically excited

A+A — A*+A

lose its excess energy

A+A* = A+A

Second step,
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Lindemann-Hinshelwood mechanism

d[A*]
dt

k[A] - K [A][A*] - k,[A*]

becomes energetically excited

A+A — A*+A

lose its excess energy

A+A* = A+A

Second step,
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- kb[A*]



Lindemann-Hinshelwood mechanism

d[A*]

dt
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Lindemann-Hinshelwood mechanism
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Lindemann-Hinshelwood mechanism

becomes energetically excited

A+A — A*+A
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Lindemann-Hinshelwood mechanism - =k[A*]= LKA
Greater deactivation
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Lindemann-Hinshelwood mechanism = k[AY]= k. +KTA]
Greater deactivation
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Lindemann-Hinshelwood mechanism

Greater deactivation

High Pressure!

k [ATA*]>>k,[A*],
K [A]>>k,,
d[P] , _ k.k,
F—kr[A] with kr— k:;
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Greater decay to form products

Low Pressure!
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Lindemann-Hinshelwood mechanism %:kbwh ﬁﬂﬂﬁl
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Lindemann-Hinshelwood mechanism %:kbwh ﬁﬂﬂﬁl
Greater deactivation Greater decay to form products
High Pressure! Low Pressure!
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Michaelis-Menten mechanism  E+S \_T ES

Michaelis—Menten
mechanism

ES —* 5 P+E

Substrate Products
Active Site O ’
Enzyme Enzyme

The substrate binds (non-covalent interactions) to the active site of the enzyme (biological
catalysts), and the enzyme facilitates the conversion of the substrate into one or more products
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Michaelis—Menten
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Michaelis—Menten
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rate of product formation ES L) P+E
v=k,[ES]

steady-state approximation
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Michaelis constant K, =
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v=k,[ES]
steady-state approximation :E:ﬂ = [E] + ES].
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Michaelis—Menten

rate of product formation ES —* 5 P+F o
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steady-state approximation E], = [E] + [ES]
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Michaelis—Menten
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Michaelis—Menten

mechanism
rate of product formation ES L} P+E
v=k,|ES]

steady-state approximation :E:[] = [E] _|_ ES].
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Michaelis-Menten mechanism
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Michaelis-Menten mechanism

v=k,|ES]
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Michaelis—Menten equation
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Michaelis—Menten
mechanism

ES —* 5 P+E

v=k,|ES]
k,
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Michaelis—Menten equation
ky[El, — v
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