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Integrated Rate Laws

A rate law is a differential equation, and solving it gives the integrated form
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First-order reaction half-life
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First-order reaction half-life

Reaction Phase 6/°C k/s" t,

2N,0. - 4NO, + O, g 25 3.38x 107 5.70h
Br, (1) 25 427 %107 451h

C,H, — 2CH, g 700 5.36 x 107" 21.6min
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Second-order reaction half-life
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Only first-order reactions have a constant half-life regardless of how much reactant you start with. For

higher-order reactions, the half-life shortens or lengthens depending on [4],.



Half-life

Reaction Order Dependence of t; 5 on [A]p
Zeroth t1/9 o [A]g

First t1/2 = constant

Second or higher (n = 2) 172 4—1;r

] |

Behavior of Half-life
Increases with increasing [A]g
Independent of [A]g

Decreases with increasing [A],

Only first-order reactions have a constant half-life regardless of how much reactant you start
with. For higher-order reactions, the half-life shortens or lengthens depending on [4],.



Second-order reactions A + B S P

d[A]
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Order Reaction Rate law and its integrated form* ts
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Consider a second-order reaction of the type A + B — P car-
ried out in a solution. Initially, the concentrations of reactants
are [A], = 0.075moldm™ and [B], = 0.050moldm™. After
1.0 h the concentration of B has fallen to [B] = 0.020 moldm™.

Example

Find the second-order rate constant.
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1.0 h the concentration of B has fallen to [B] = 0.020 moldm™.
Because the change in the concentration of B is the same as
that of A (and equal to x), it follows that during this time
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Example
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Consider a second-order reaction of the type A + B — P car-
ried out in a solution. Initially, the concentrations of reactants
are [A], = 0.075moldm™ and [B], = 0.050moldm™. After
1.0 h the concentration of B has fallen to [B] = 0.020 moldm™.
Because the change in the concentration of B is the same as
that of A (and equal to x), it follows that during this time
interval

Example

x = (0.050 — 0.020) moldm™ = 0.030 moldm™

[A] = [A], — x = (0.075 — 0.030) mol dm™ = 0.045moldm™

1 0.020/0.050 [B]/[B]

In

ATAL = (Bl ALk

]
* = ((0.050-0.075)mol dm °)x(3600's)  0.045/0.075

=45%x10"dm °mol's™
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Towards equilibrium...
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is valid only for simple elementary reversible reactions.



Towards equilibrium...
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Temperature dependence of reaction rates

Arrhenius equation The Arrhenius equation suggests that the rate constant of a reaction
increases exponentially with temperature
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Temperature dependence of reaction rates
Arrhenius equation The Arrhenius equation suggests that the rate constant of a reaction
increases exponentially with temperature

activation energy.

|

EEI
RT

Ink, =InA -

!

frequency factor |

accounts for collision frequency and orientation



Temperature dependence of reaction rates

Arrhenius equation transition state

activation energy

Reactants

EEI
RT

Potential energy

Products

Ink, =InA -

Reaction coordinate

The activation energy is the minimum energy reactants
must have in order to form products.



Temperature dependence of reaction rates

Arrhenius equation
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Temperature dependence of reaction rates

Arrhenius equation

activation energy Represents the probability that a molecular
I collision has enough energy to lead to a reaction
E Fraction of molecules with energy > E, o e F«/#
Ink =InA —=3
r RT

!

frequency factor |

accounts for collision frequency and orientation



Temperature dependence of reaction rates

Arrhenius equation
activation energy

|

EEI
RT

——InA

Slope =-E /R

In kr

Ink. =lnA -

!

frequency factor | T



Temperature dependence of reaction rates

Arrhenius equation

activation energy 1 a
I . Slope =-E /R
E P
Ink =lnA — =2 -
r l RT
frequency factor | T

A can depend on temperature, although it's often approximated as
constant over small temperature ranges.



Temperature dependence of reaction rates

Arrhenius equation
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Question For a reaction with an activation energy of 50kimol™. an
increase in the temperature from 25°C to 37°C

What is the change in the rate constant?
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Question For a reaction with an activation energy of 50kimol™. an
increase in the temperature from 25°C to 37°C
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Question For a reaction with an activation energy of 50kimol™. an
increase in the temperature from 25°C to 37°C

: . E
What is the change in the rate constant? Ink, =InA — R%‘
Ink,, —Ink,, =— RT, + RT
| k, E(1 1 | k.,  50x10’Jmol™ 1 1
"%, R\T T, k., T 83145]K "mol ' | 298K ~ 310K

_50x10° (11
~ 83145 | 298 310

]=0.781...

k., =2.18k,,.



Question Which statements are true?

A high activation energy signifies that the rate con-
stant depends strongly on temperature.

o If a reaction has zero activation energy, its rate is
independent of temperature.

« A negative activation energy indicates that the rate
decreases as the temperature is raised.

Ea 2=
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Question Which statements are true? All three

A high activation energy signifies that the rate con-
stant depends strongly on temperature.

o If a reaction has zero activation energy, its rate is
independent of temperature.

« A negative activation energy indicates that the rate
decreases as the temperature is raised.
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Non-Arrhenius Chemical reactions

20 [ |
Decomposihion of
sl Diacetylene _ * Chemical reactions involving quantum
effects
% * Reactions with temperature-dependent
18 . activation energies
 Thermal degradation

17 -

Hou and Palmer, J. Phys. Chem,

69, 858 (1963)
16 | |
0.000% 0.0009 0.0010

LT (1/E)



The role of a catalyst A substance that accelerates a reaction
but undergoes no net chemical change



The role of a catalyst A substance that accelerates a reaction
but undergoes no net chemical change

E (uncatalysed) | /...

E (catalysed)

}h ° °

5 Provides an alternative
E; Reactants path |

5

S

Products
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