Reaction quotient

$$Q = \prod_{J} a_{J}^{v_{J}}$$

$$Q = \frac{\text{activities of products}}{\text{activities of reactants}}$$

$$\Delta_{\mathbf{r}}G = \Delta_{\mathbf{r}}G^{\ominus} + RT \ln Q$$

$$\Delta_{\mathbf{r}}G^{\ominus} = \sum_{\text{Products}} v \Delta_{\mathbf{f}}G^{\ominus} - \sum_{\text{Reactants}} v \Delta_{\mathbf{f}}G^{\ominus}$$

At equilibrium,

$$K = \left(\prod_{J} a_{J}^{\nu_{J}}\right)_{\text{equilibrium}}$$

thermodynamic equilibrium constant.

$$Q = \prod_{J} a_{J}^{\nu_{J}}$$

$$K = \left(\prod_{J} a_{J}^{\nu_{J}}\right)_{\text{equilibrium}}$$

Approximating Activity:

State	Measure	Approximation for a_J	Definition
Solute	molality	$b_{\mathtt{J}}/b_{\mathtt{J}}^{\ominus}$	$b^{\ominus} = 1 \operatorname{molkg}^{-1}$
	molar concentration	[J]/ <i>c</i> [⊕]	$c^{\ominus} = 1 \mathrm{mol}\mathrm{dm}^{-3}$
Gas phase	partial pressure	$p_{\rm J}/p^{\rm e}$	$p^{\ominus} = 1 \mathrm{bar}$
Pure solid, liquid		1 (exact)	

$$Q = \prod_{J} a_{J}^{v_{J}}$$

$$K = \left(\prod_{J} a_{J}^{\nu_{J}}\right)_{\text{equilibrium}}$$

Approximating Activity:

State	Measure	Approximation for a_{J}	Definition
Solute	molality	$b_{\mathtt{J}}/b_{\mathtt{J}}^{\ominus}$	$b^{\ominus} = 1 \operatorname{molkg}^{-1}$
	molar concentration	[J]/ <i>c</i> [⊕]	$c^{\ominus} = 1 \mathrm{mol}\mathrm{dm}^{-3}$
Gas phase	partial pressure	p_1/p^{\ominus}	$p^{\ominus} = 1 \mathrm{bar}$
Pure solid, liquid		1 (exact)	

The equilibrium constant for the heterogeneous equilibrium $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ is

$$Q = \prod_{J} a_{J}^{\nu_{J}}$$

$$K = \left(\prod_{J} a_{J}^{\nu_{J}}\right)_{\text{equilibrium}}$$

Approximating Activity:

State	Measure	Approximation for a_J	Definition
Solute	molality	$b_{\mathtt{J}}/b_{\mathtt{J}}^{\ominus}$	$b^{\scriptscriptstyle \ominus} = 1 \mathrm{mol} \mathrm{kg}^{\scriptscriptstyle -1}$
	molar concentration	[J]/ <i>c</i> [⊕]	$c^{\Theta} = 1 \mathrm{mol}\mathrm{dm}^{-3}$
Gas phase	partial pressure	$p_{\rm J}/p^{\rm e}$	$p^{\ominus} = 1 \mathrm{bar}$
Pure solid, liquid		1 (exact)	

The equilibrium constant for the heterogeneous equilibrium $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ is

$$K = a_{\text{CaCO}_3(s)}^{-1} a_{\text{CaO}(s)} a_{\text{CO}_2(g)} = \frac{\overbrace{a_{\text{CaO}(s)}}^{1} a_{\text{CO}_2(g)}}^{1} = a_{\text{CO}_2(g)}^{-1} = a_{\text{CO}_2(g)}^{-1}$$

$$Q = \prod_{J} a_{J}^{\nu_{J}}$$

$$K = \left(\prod_{J} a_{J}^{\nu_{J}}\right)_{\text{equilibrium}}$$

Approximating Activity:

State	Measure	Approximation for a_J	Definition
Solute	molality	$b_{\mathtt{J}}/b_{\mathtt{J}}^{\ominus}$	$b^{\scriptscriptstyle \ominus} = 1 \mathrm{mol} \mathrm{kg}^{\scriptscriptstyle -1}$
	molar concentration	[J]/ <i>c</i> [⊖]	$c^{\Theta} = 1 \mathrm{mol}\mathrm{dm}^{-3}$
Gas phase	partial pressure	$p_{\rm J}/p^{\rm e}$	$p^{\ominus} = 1 \mathrm{bar}$
Pure solid, liquid		1 (exact)	

The equilibrium constant for the heterogeneous equilibrium $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ is

$$K = a_{\text{CaCO}_3(s)}^{-1} a_{\text{CaO}(s)} a_{\text{Co}_2(g)} = \frac{\overbrace{a_{\text{CaO}(s)}}^{1} a_{\text{CO}_2(g)}}{\underbrace{a_{\text{CaCO}_3(s)}}_{1}} = a_{\text{CO}_2(g)} = p_{\text{CO}_2}/p^{\ominus}$$

$$\alpha = (n - n_{eq})$$

The amount of reactant that has decomposed

$$\alpha = (n - n_{eq})$$

The amount of reactant that has decomposed

$$\alpha = (n - n_{\rm eq})/n$$

The fraction of reactant that has decomposed

The fraction of reactant that has decomposed

$$\alpha = (n - n_{\rm eq})/n$$
.

$$N_2O_4 \longrightarrow 2NO_2$$
Initially at time, $t=0$ 1 0
the number of mole:
At equilibrium: $1-\alpha$ 2α

$$\alpha = (n - n_{\rm eq})/n$$
.

The standard reaction Gibbs energy for the decomposition $H_2O(g) \to H_2(g) + \frac{1}{2}O_2(g)$ is $+118.08\,\mathrm{kJ\,mol^{-1}}$ at 2300 K. What is the degree of dissociation of H_2O at 2300 K when the reaction is allowed to come to equilibrium at a total pressure of 1.00 bar?

$$\alpha = (n - n_{\rm eq})/n$$
.

The standard reaction Gibbs energy for the decomposition $H_2O(g) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$ is +118.08 kJ mol⁻¹ at 2300 K. What is the degree of dissociation of H₂O at 2300 K when the reaction is allowed to come to equilibrium at a total

	$\mathrm{H_{2}O} \rightarrow$	H ₂ +	$-\frac{1}{2}\mathbf{O}_2$	
Initial amount	n	0	0	

$$\alpha = (n - n_{\rm eq})/n$$
.

The standard reaction Gibbs energy for the decomposition $H_2O(g) \to H_2(g) + \frac{1}{2} O_2(g)$ is +118.08 kJ mol⁻¹ at 2300 K. What is the degree of dissociation of H_2O at 2300 K when the reaction is allowed to come to equilibrium at a total

	$H_2O \rightarrow$	H ₂ +	$\frac{1}{2}$ O_2
Initial amount	n	0	0
Amount reacted	$-\alpha n$		

$$\alpha = (n - n_{eq})/n$$
.

The standard reaction Gibbs energy for the decomposition $H_2O(g) \to H_2(g) + \frac{1}{2}O_2(g)$ is $+118.08\,\mathrm{kJ\,mol^{-1}}$ at 2300 K. What is the degree of dissociation of H_2O at 2300 K when the reaction is allowed to come to equilibrium at a total

	${\rm H_2O} \rightarrow$	H ₂ +	$\frac{1}{2}$ O_2
Initial amount	n	0	0
Amount reacted/produced (moles)	$-\alpha n$	+\alpha n	$+\frac{1}{2}\alpha n$

$$\alpha = (n - n_{eq})/n$$
.

The standard reaction Gibbs energy for the decomposition $H_2O(g) \to H_2(g) + \frac{1}{2}O_2(g)$ is $+118.08\,\mathrm{kJ\,mol^{-1}}$ at 2300 K. What is the degree of dissociation of H_2O at 2300 K when the reaction is allowed to come to equilibrium at a total

	${\rm H_2O} \rightarrow$	H ₂ +	$\frac{1}{2}$ O_2
Initial amount	n	0	0
Amount reacted/produced (moles)	$-\alpha n$	+\alpha n	$+\frac{1}{2}\alpha n$
Amount remaining (moles)	$(1-\alpha)n$	ОСП	$\frac{1}{2}\alpha n$

$$\alpha = (n - n_{eq})/n$$
.

The standard reaction Gibbs energy for the decomposition $H_2O(g) \to H_2(g) + \frac{1}{2}O_2(g)$ is $+118.08\,\mathrm{kJ\,mol^{-1}}$ at 2300 K. What is the degree of dissociation of H_2O at 2300 K when the reaction is allowed to come to equilibrium at a total

	${ m H_2O} ightarrow$	H ₂ +	$\frac{1}{2}$ O_2	
Initial amount	n	0	0	
Amount reacted/produced (moles)	$-\alpha n$	$+\alpha n$	$+\frac{1}{2}\alpha n$	
Amount remaining (moles)	$(1-\alpha)n$	αn	$\frac{1}{2}\alpha n$	Total: $(1+\frac{1}{2}\alpha)n$

$$\alpha = (n - n_{\rm eq})/n$$
.

The standard reaction Gibbs energy for the decomposition $H_2O(g) \to H_2(g) + \frac{1}{2} O_2(g)$ is $+118.08 \, \text{kJ} \, \text{mol}^{-1}$ at 2300 K. What is the degree of dissociation of H_2O at 2300 K when the reaction is allowed to come to equilibrium at a total

	${\rm H_2O} \rightarrow$	H ₂ +	$\frac{1}{2}$ O_2	
Initial amount	n	0	0	
Amount reacted/produced (moles)	$-\alpha n$	+\alpha n	$+\frac{1}{2}\alpha n$	
Amount remaining (moles)	$(1-\alpha)n$	αn	$\frac{1}{2}\alpha n$	Total: $(1+\frac{1}{2}\alpha)n$
Amount remaining (mole fraction)	$\frac{1-\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\frac{1}{2}\alpha}{1+\frac{1}{2}\alpha}$	

$$\alpha = (n - n_{\rm eq})/n$$
.

The standard reaction Gibbs energy for the decomposition $H_2O(g) \to H_2(g) + \frac{1}{2} O_2(g)$ is +118.08 kJ mol⁻¹ at 2300 K. What is the degree of dissociation of H_2O at 2300 K when the reaction is allowed to come to equilibrium at a total

	$H_2O \rightarrow$	H ₂ +	$\frac{1}{2}$ O_2	
Initial amount	n	0	0	
Amount reacted/produced (moles)	$-\alpha n$	+\alpha n	$+\frac{1}{2}\alpha n$	
Amount remaining (moles)	$(1-\alpha)n$	αn	$\frac{1}{2}\alpha n$	Total: $(1+\frac{1}{2}\alpha)n$
Amount remaining (mole fraction)	$\frac{1-\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\frac{1}{2}\alpha}{1+\frac{1}{2}\alpha}$	
Partial pressure, p_J	$\frac{(1-\alpha)p}{1+\frac{1}{2}\alpha}$	$\frac{\alpha p}{1+\frac{1}{2}\alpha}$	$\frac{\frac{1}{2}\alpha p}{1+\frac{1}{2}\alpha}$	

$$K = \frac{p_{\rm H_2} p_{\rm O_2}^{1/2}}{p_{\rm H_2O}}$$

	${\rm H_2O} \rightarrow$	H ₂ +	$\frac{1}{2}$ O_2	
Initial amount	n	0	0	
Amount reacted/produced (moles)	$-\alpha n$	+\alpha n	$+\frac{1}{2}\alpha n$	
Amount remaining (moles)	$(1-\alpha)n$	αn	$\frac{1}{2}\alpha n$	Total: $(1+\frac{1}{2}\alpha)n$
Amount remaining (mole fraction)	$\frac{1-\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\frac{1}{2}\alpha}{1+\frac{1}{2}\alpha}$	
Partial pressure, p_J	$\frac{(1-\alpha)p}{1+\frac{1}{2}\alpha}$	$\frac{\alpha p}{1+\frac{1}{2}\alpha}$	$\frac{\frac{1}{2}\alpha p}{1+\frac{1}{2}\alpha}$	

The standard reaction Gibbs energy for the decomposition $H_2O(g) \to H_2(g) + \frac{1}{2} O_2(g)$ is +118.08 kJ mol⁻¹ at 2300 K. What is the degree of dissociation of H_2O at 2300 K when the reaction is allowed to come to equilibrium at a total pressure of 1.00 bar?

$$K = \frac{p_{\text{H}_2} p_{\text{O}_2}^{1/2}}{p_{\text{H}_2\text{O}}} = \frac{\alpha^{3/2} p^{1/2}}{(1 - \alpha)(2 + \alpha)^{1/2}}$$

	${\rm H_2O} \rightarrow$	H ₂ +	$\frac{1}{2}$ O_2	
Initial amount	n	0	0	
Amount reacted/produced (moles)	$-\alpha n$	+\alpha n	$+\frac{1}{2}\alpha n$	
Amount remaining (moles)	$(1-\alpha)n$	αn	$\frac{1}{2}\alpha n$	Total: $(1+\frac{1}{2}\alpha)n$
Amount remaining (mole fraction)	$\frac{1-\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\frac{1}{2}\alpha}{1+\frac{1}{2}\alpha}$	
Partial pressure, p_J	$\frac{(1-\alpha)p}{1+\frac{1}{2}\alpha}$	$\frac{\alpha p}{1+\frac{1}{2}\alpha}$	$\frac{\frac{1}{2}\alpha p}{1+\frac{1}{2}\alpha}$	

The standard reaction Gibbs energy for the decomposition $H_2O(g) \to H_2(g) + \frac{1}{2}O_2(g)$ is +118.08 kJ mol⁻¹ at 2300 K. What is the degree of dissociation of H_2O at 2300 K when the reaction is allowed to come to equilibrium at a total pressure of 1.00 bar?

$$K = \frac{p_{\text{H}_2} p_{\text{O}_2}^{1/2}}{p_{\text{H}_2\text{O}}} = \frac{\alpha^{3/2} p^{1/2}}{(1 - \alpha)(2 + \alpha)^{1/2}}$$

$$K \approx \frac{\alpha^{3/2} p^{1/2}}{2^{1/2}}$$

	${\rm H_2O} \rightarrow$	H ₂ +	$\frac{1}{2}$ O_2	
Initial amount	n	0	0	
Amount reacted/produced (moles)	$-\alpha n$	+\alpha n	$+\frac{1}{2}\alpha n$	
Amount remaining (moles)	$(1-\alpha)n$	αn	$\frac{1}{2}\alpha n$	Total: $(1+\frac{1}{2}\alpha)n$
Amount remaining (mole fraction)	$\frac{1-\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\frac{1}{2}\alpha}{1+\frac{1}{2}\alpha}$	
Partial pressure, p_J	$\frac{(1-\alpha)p}{1+\frac{1}{2}\alpha}$	$\frac{\alpha p}{1+\frac{1}{2}\alpha}$	$\frac{\frac{1}{2}\alpha p}{1+\frac{1}{2}\alpha}$	

The standard reaction Gibbs energy for the decomposition $H_2O(g) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$ is +118.08 kJ mol⁻¹ at 2300 K. What is the degree of dissociation of H_2O at 2300 K when the reaction is allowed to come to equilibrium at a total pressure of 1.00 bar?

$$K = \frac{p_{\text{H}_2} p_{\text{O}_2}^{1/2}}{p_{\text{H}_2\text{O}}} = \frac{\alpha^{3/2} p^{1/2}}{(1 - \alpha)(2 + \alpha)^{1/2}}$$

$$K \approx \frac{\alpha^{3/2} p_{\perp}^{1/2}}{2^{1/2}} p = 1.00 \,\text{bar}$$

	${\rm H_2O} \rightarrow$	H ₂ +	$\frac{1}{2}$ O_2	
Initial amount	n	0	0	
Amount reacted/produced (moles)	$-\alpha n$	+αn	$+\frac{1}{2}\alpha n$	
Amount remaining (moles)	$(1-\alpha)n$	αn	$\frac{1}{2}\alpha n$	Total: $(1+\frac{1}{2}\alpha)n$
Amount remaining (mole fraction)	$\frac{1-\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\frac{1}{2}\alpha}{1+\frac{1}{2}\alpha}$	
Partial pressure, p_{J}	$\frac{(1-\alpha)p}{1+\frac{1}{2}\alpha}$	$\frac{\alpha p}{1+\frac{1}{2}\alpha}$	$\frac{\frac{1}{2}\alpha p}{1+\frac{1}{2}\alpha}$	

The standard reaction Gibbs energy for the decomposition $H_2O(g) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$ is +118.08 kJ mol⁻¹ at 2300 K. What is the degree of dissociation of H_2O at 2300 K when the reaction is allowed to come to equilibrium at a total pressure of 1.00 bar?

$$K = \frac{p_{\text{H}_2} p_{\text{O}_2}^{1/2}}{p_{\text{H}_2\text{O}}} = \frac{\alpha^{3/2} p^{1/2}}{(1 - \alpha)(2 + \alpha)^{1/2}}$$

$$K \approx \frac{\alpha^{3/2} p^{1/2}}{2^{1/2}} \qquad p = 1.00 \,\text{bar}$$

$$\alpha \approx (2^{1/2}K)^{2/3}$$

	$\mathrm{H_{2}O} \rightarrow$	H ₂ +	$\frac{1}{2}$ O_2	
Initial amount	n	0	0	
Amount reacted/produced (moles)	$-\alpha n$	+\alpha n	$+\frac{1}{2}\alpha n$	
Amount remaining (moles)	$(1-\alpha)n$	αn	$\frac{1}{2}\alpha n$	Total: $(1+\frac{1}{2}\alpha)n$
Amount remaining (mole fraction)	$\frac{1-\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\frac{1}{2}\alpha}{1+\frac{1}{2}\alpha}$	
Partial pressure, p_J	$\frac{(1-\alpha)p}{1+\frac{1}{2}\alpha}$	$\frac{\alpha p}{1+\frac{1}{2}\alpha}$	$\frac{\frac{1}{2}\alpha p}{1+\frac{1}{2}\alpha}$	

The standard reaction Gibbs energy for the decomposition $H_2O(g) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$ is +118.08 kJ mol⁻¹ at 2300 K. What is the degree of dissociation of H_2O at 2300 K when the reaction is allowed to come to equilibrium at a total pressure of 1.00 bar?

$$K = \frac{p_{\text{H}_2} p_{\text{O}_2}^{1/2}}{p_{\text{H}_2\text{O}}} = \frac{\alpha^{3/2} p^{1/2}}{(1 - \alpha)(2 + \alpha)^{1/2}}$$

$$K \approx \frac{\alpha^{3/2} p_{-}^{1/2}}{2^{1/2}} p = 1.00 \,\text{bar}$$

$$\alpha\approx (2^{1/2}K)^{2/3}$$

$$\ln K = -\frac{\Delta_{\rm r} G^{\circ}}{RT} = -\frac{1.1808 \times 10^{5} \,\mathrm{J mol^{-1}}}{(8.3145 \,\mathrm{J K^{-1} \,mol^{-1}}) \times (2300 \,\mathrm{K})}$$
$$= -\frac{1.1808 \times 10^{5}}{8.3145 \times 2300} = -6.17...$$

	${\rm H_2O} \rightarrow$	H ₂ +	$\frac{1}{2}$ O_2	
Initial amount	n	0	0	
Amount reacted/produced (moles)	$-\alpha n$	+\alpha n	$+\frac{1}{2}\alpha n$	
Amount remaining (moles)	$(1-\alpha)n$	αn	$\frac{1}{2}\alpha n$	Total: $(1+\frac{1}{2}\alpha)n$
Amount remaining (mole fraction)	$\frac{1-\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\frac{1}{2}\alpha}{1+\frac{1}{2}\alpha}$	
Partial pressure, p_J	$\frac{(1-\alpha)p}{1+\frac{1}{2}\alpha}$	$\frac{\alpha p}{1+\frac{1}{2}\alpha}$	$\frac{\frac{1}{2}\alpha p}{1+\frac{1}{2}\alpha}$	

The standard reaction Gibbs energy for the decomposition $H_2O(g) \to H_2(g) + \frac{1}{2} O_2(g)$ is $+118.08\,\mathrm{kJ\,mol^{-1}}$ at 2300 K. What is the degree of dissociation of H_2O at 2300 K when the reaction is allowed to come to equilibrium at a total pressure of 1.00 bar?

$$K = \frac{p_{\text{H}_2} p_{\text{O}_2}^{1/2}}{p_{\text{H}_2\text{O}}} = \frac{\alpha^{3/2} p^{1/2}}{(1 - \alpha)(2 + \alpha)^{1/2}}$$

$$K \approx \frac{\alpha^{3/2} p_{\perp}^{1/2}}{2^{1/2}} p = 1.00 \,\text{bar}$$

$$\alpha \approx (2^{1/2} K)^{2/3}$$

$$\ln K = -\frac{\Delta_{\rm r} G^{\circ}}{RT} = -\frac{1.1808 \times 10^{5} \,\mathrm{J mol^{-1}}}{(8.3145 \,\mathrm{J K^{-1} \,mol^{-1}}) \times (2300 \,\mathrm{K})}$$
$$= -\frac{1.1808 \times 10^{5}}{8.3145 \times 2300} = -6.17...$$

	${\rm H_2O} \rightarrow$	H ₂ +	$\frac{1}{2}$ O_2	
Initial amount	n	0	0	
Amount reacted/produced (moles)	$-\alpha n$	+αn	$+\frac{1}{2}\alpha n$	
Amount remaining (moles)	$(1-\alpha)n$	αn	$\frac{1}{2}\alpha n$	Total: $(1+\frac{1}{2}\alpha)n$
Amount remaining (mole fraction)	$\frac{1-\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\frac{1}{2}\alpha}{1+\frac{1}{2}\alpha}$	
Partial pressure, p_J	$\frac{(1-\alpha)p}{1+\frac{1}{2}\alpha}$	$\frac{\alpha p}{1+\frac{1}{2}\alpha}$	$\frac{\frac{1}{2}\alpha p}{1+\frac{1}{2}\alpha}$	

The standard reaction Gibbs energy for the decomposition $H_2O(g) \rightarrow H_2(g) + \frac{1}{2} O_2(g)$ is +118.08 kJ mol⁻¹ at 2300 K. What is the degree of dissociation of H_2O at 2300 K when the reaction is allowed to come to equilibrium at a total pressure of 1.00 bar?

$$K = 2.08 \times 10^{-3}$$

$$K = \frac{p_{\text{H}_2} p_{\text{O}_2}^{1/2}}{p_{\text{H}_2\text{O}}} = \frac{\alpha^{3/2} p^{1/2}}{(1 - \alpha)(2 + \alpha)^{1/2}}$$

$$K \approx \frac{\alpha^{3/2} p_{-}^{1/2}}{2^{1/2}} p = 1.00 \,\text{bar}$$

$$\alpha \approx (2^{1/2} K)^{2/3}$$

$$\ln K = -\frac{\Delta_{\rm r} G^{\circ}}{RT} = -\frac{1.1808 \times 10^{5} \,\mathrm{J mol^{-1}}}{(8.3145 \,\mathrm{J K^{-1} \,mol^{-1}}) \times (2300 \,\mathrm{K})}$$
$$= -\frac{1.1808 \times 10^{5}}{8.3145 \times 2300} = -6.17...$$

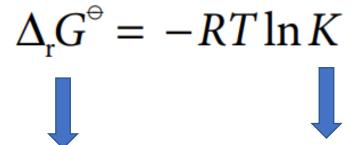
	${\rm H_2O} \rightarrow$	H ₂ +	$\frac{1}{2}$ O_2	
Initial amount	n	0	0	
Amount reacted/produced (moles)	$-\alpha n$	+\alpha n	$+\frac{1}{2}\alpha n$	
Amount remaining (moles)	$(1-\alpha)n$	αn	$\frac{1}{2}\alpha n$	Total: $(1+\frac{1}{2}\alpha)n$
Amount remaining (mole fraction)	$\frac{1-\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\alpha}{1+\frac{1}{2}\alpha}$	$\frac{\frac{1}{2}\alpha}{1+\frac{1}{2}\alpha}$	
Partial pressure, p_J	$\frac{(1-\alpha)p}{1+\frac{1}{2}\alpha}$	$\frac{\alpha p}{1+\frac{1}{2}\alpha}$	$\frac{\frac{1}{2}\alpha p}{1+\frac{1}{2}\alpha}$	

The standard reaction Gibbs energy for the decomposition $H_2O(g) \to H_2(g) + \frac{1}{2} O_2(g)$ is $+118.08\,\mathrm{kJ\,mol^{-1}}$ at 2300 K. What is the degree of dissociation of H_2O at 2300 K when the reaction is allowed to come to equilibrium at a total pressure of 1.00 bar?

$$K = 2.08 \times 10^{-3}$$

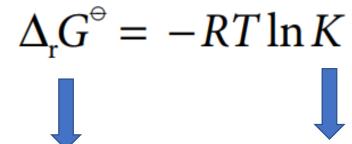
 $\alpha \approx (2^{1/2} K)^{2/3} = 0.0205$

$$\Delta_{\mathbf{r}}G^{\ominus} = -RT\ln K$$



Defined at a single, STD pressure (1 bar)

Does not change with the Pressure



Defined at a single, STD pressure (1 bar)

Does not change with the Pressure

However, the composition of the reaction mixture could change!

A system at equilibrium, when subjected to a disturbance, tends to respond in a way that minimizes the effect of the disturbance.

Le Chatelier's principle

A system at equilibrium, when subjected to a disturbance, tends to respond in a way that minimizes the effect of the disturbance.

$$A(g) \rightleftharpoons 2B(g)$$

$$K = \frac{p_{\rm B}^2}{p_{\rm A} p^{\oplus}}$$

Le Chatelier's principle

A system at equilibrium, when subjected to a disturbance, tends to respond in a way that minimizes the effect of the disturbance.

$$A(g) \rightleftharpoons 2B(g)$$

$$K = \frac{p_{\rm B}^2}{p_{\rm A} p^{\scriptscriptstyle \ominus}}$$

Increase in pressure $A(g) \leftarrow 2B(g)$.

Le Chatelier's principle

A system at equilibrium, when subjected to a disturbance, tends to respond in a way that minimizes the effect of the disturbance.

$$A(g) \rightleftharpoons 2B(g)$$

$$K = \frac{p_{\rm B}^2}{p_{\rm A} p^{\oplus}}$$

Increase in pressure $A(g) \leftarrow 2B(g)$.

K is independent of pressure. But the amounts of A and B do depend on the pressure

Response to temperature

Exothermic reactions: increased temperature favours the reactants.

Endothermic reactions: increased temperature favours the products.

$$\ln K = -\frac{\Delta_{\rm r} G^{\scriptscriptstyle \ominus}}{RT}$$

$$\ln K = -\frac{\Delta_{\rm r} G^{\scriptscriptstyle \ominus}}{RT}$$

$$\frac{\mathrm{d}\ln K}{\mathrm{d}T} = -\frac{1}{R} \frac{\mathrm{d} \left(\Delta_{\mathrm{r}} G^{\ominus}/T\right)}{\mathrm{d}T}$$

$$\ln K = -\frac{\Delta_{\rm r} G^{\oplus}}{RT}$$

$$\frac{\mathrm{d}\ln K}{\mathrm{d}T} = -\frac{1}{R} \frac{\mathrm{d} \left(\Delta_{\mathrm{r}} G^{\ominus}/T\right)}{\mathrm{d}T}$$

$$\frac{\mathrm{d}(\Delta_{r}G^{\ominus}/T)}{\mathrm{d}T} = -R\frac{\mathrm{d}\ln K}{\mathrm{d}T}$$

$$\ln K = -\frac{\Delta_{\rm r} G^{\oplus}}{RT}$$

$$\frac{\mathrm{d}\ln K}{\mathrm{d}T} = -\frac{1}{R} \frac{\mathrm{d}\left(\Delta_{\mathrm{r}} G^{\ominus}/T\right)}{\mathrm{d}T}$$

$$\frac{\mathrm{d}(\Delta_{r}G^{\ominus}/T)}{\mathrm{d}T} = -R\frac{\mathrm{d}\ln K}{\mathrm{d}T}$$

Gibbs-Helmholtz equation:

$$\frac{d(G/T)/dT = -H/T^{2}}{\frac{d(\Delta_{r}G^{\ominus}/T)}{dT}} = -\frac{\Delta_{r}H^{\ominus}}{T^{2}}$$

 $\Delta_r H^O$ is the standard reaction enthalpy at the temperature T

$$\ln K = -\frac{\Delta_{\rm r} G^{\ominus}}{RT}$$

$$\frac{\mathrm{d}\ln K}{\mathrm{d}T} = -\frac{1}{R} \frac{\mathrm{d} \left(\Delta_{\mathrm{r}} G^{\ominus}/T\right)}{\mathrm{d}T}$$

$$\frac{\mathrm{d}(\Delta_{r}G^{\ominus}/T)}{\mathrm{d}T} = -R\frac{\mathrm{d}\ln K}{\mathrm{d}T}$$

$$\frac{d(G/T)/dT = -H/T^{2}}{\frac{d(\Delta_{r}G^{\ominus}/T)}{dT}} = -\frac{\Delta_{r}H^{\ominus}}{T^{2}}$$

 $\Delta_r H^O$ is the standard reaction enthalpy at the temperature T

$$R\frac{\mathrm{d}\ln K}{\mathrm{d}T} = \frac{\Delta_{\mathrm{r}}H^{\ominus}}{T^2}$$

$$\ln K = -\frac{\Delta_{\rm r} G^{\ominus}}{RT}$$

$$\frac{\mathrm{d}\ln K}{\mathrm{d}T} = -\frac{1}{R} \frac{\mathrm{d}\left(\Delta_{\mathrm{r}} G^{\ominus}/T\right)}{\mathrm{d}T}$$

$$\frac{\mathrm{d}(\Delta_{r}G^{\ominus}/T)}{\mathrm{d}T} = -R\frac{\mathrm{d}\ln K}{\mathrm{d}T}$$

$$\frac{d(G/T)/dT = -H/T^{2}}{\frac{d(\Delta_{r}G^{\ominus}/T)}{dT}} = -\frac{\Delta_{r}H^{\ominus}}{T^{2}}$$

 $\Delta_r H^O$ is the standard reaction enthalpy at the temperature T

$$R\frac{\mathrm{d}\ln K}{\mathrm{d}T} = \frac{\Delta_{\mathrm{r}}H^{\ominus}}{T^2}$$

$$\frac{\mathrm{d}\ln K}{\mathrm{d}T} = \frac{\Delta_{\mathrm{r}}H^{\ominus}}{RT^2}$$

$$\ln K = -\frac{\Delta_{\rm r} G^{\ominus}}{RT}$$

$$\frac{\mathrm{d}\ln K}{\mathrm{d}T} = -\frac{1}{R} \frac{\mathrm{d} \left(\Delta_{\mathrm{r}} G^{\ominus}/T\right)}{\mathrm{d}T}$$

$$\frac{\mathrm{d}(\Delta_{r}G^{\ominus}/T)}{\mathrm{d}T} = -R\frac{\mathrm{d}\ln K}{\mathrm{d}T}$$

$$\frac{d(G/T)/dT = -H/T^{2}}{\frac{d(\Delta_{r}G^{\ominus}/T)}{dT}} = -\frac{\Delta_{r}H^{\ominus}}{T^{2}}$$

 $\Delta_r H^O$ is the standard reaction enthalpy at the temperature T

$$R\frac{\mathrm{d}\ln K}{\mathrm{d}T} = \frac{\Delta_{\mathrm{r}}H^{\ominus}}{T^{2}} \qquad \qquad \frac{\mathrm{d}\ln K}{\mathrm{d}T} = \frac{\Delta_{\mathrm{r}}H^{\ominus}}{RT^{2}}$$

Exothermic reactions: increased temperature favours the reactants.

Endothermic reactions: increased temperature favours the products.

Value of K at different T

$$\frac{\mathrm{d}\ln K}{\mathrm{d}T} = \frac{\Delta_{\mathrm{r}}H^{\ominus}}{RT^{2}} \qquad \qquad \ln K_{2} - \ln K_{1} = -\frac{\Delta_{\mathrm{r}}H^{\ominus}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)$$

Value of K at different T

$$\frac{\mathrm{d}\ln K}{\mathrm{d}T} = \frac{\Delta_{\mathrm{r}}H^{\ominus}}{RT^{2}} \qquad \qquad \ln K_{2} - \ln K_{1} = -\frac{\Delta_{\mathrm{r}}H^{\ominus}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)$$

Value of K at different T

$$\frac{\mathrm{d}\ln K}{\mathrm{d}T} = \frac{\Delta_{\mathrm{r}}H^{\ominus}}{RT^{2}} \qquad \qquad \ln K_{2} - \ln K_{1} = -\frac{\Delta_{\mathrm{r}}H^{\ominus}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)$$

$$\ln K_2 - \ln K_1 = \frac{\Delta_r H^{\oplus}}{R} \int_{T_1}^{T_2} \frac{1}{T^2} dT$$

Focus 6: Chemical equilibrium

The equilibrium constant

The response of equilibria to the conditions

Electrochemical cells

Electrode potentials