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Total ideal molar Gibbs free energy is written as the sum of ideal chemical potentials for cations and anions
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real Gibbs energy is the sum of the chemical potentials of both ions
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— G:}‘*al + RT1n Y.Y. All the deviations from ideality are contained in the last term
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v, defined via the geometric mean
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Debye-Hiickel

Limiting law

——>For very low concentrations




Debye“HUCkel L|m|1'|n9 I(]W —For very low concentrations

logy,=-A|z.z |I'”



Debye“HUCkel lel'l'lng I(]W —For very low concentrations

A =0.509 for an aqueous solution at 25°C  (depends on temperature and solvent)
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Debye“HUCkel lel'l'lng l(]W —For very low concentrations

A =0.509 for an aqueous solution at 25°C

l
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% ZZ (b / b ) - dimensionless
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charge number of an ion i b = 1 mol kg'!

positive for cations and negative for anions



Question A = 0.509 for an aqueous solution at 25°C

Estimate mean activity coefficient of 5.0 mmol kg™ KCl .4 at 25 °C using Debye—
Hickel limiting law.

log y.=—Alz,z |I""

l
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=5.0 x10~ ESIFACY




Question A = 0.509 for an aqueous solution at 25°C

Estimate mean activity coefficient of 5.0 mmol kg™ KCl .4 at 25 °C using Debye—
Hickel limiting law.

log Y. =-Alz,z |I'
I=1(b.+b)/b° = bjb° l

=5.0 x10~ ESIFACY

log 7, = -0.509 X (5.0 x107)"* = —0.03...

Y. = 0.92. The experimental value is 0.927.



For higher ionic strengths log 7, =—A|z,z_|I'"”

Alz,z II”E Extended Debye-
lﬂg?i - 1+ B[ Huckel law

Valid over a wider ionic strength range (up to ~0.1 mol/kg).

B is an empirical parameter (lon-size effects)



For higher ionic strengths log 7, =—A|z,z_|I'"”

Alz,z II”E Extended Debye-
lﬂg?i - 1+ B[ Huckel law

Valid over a wider ionic strength range (up to ~0.1 mol/kg).

B is an empirical parameter (lon-size effects)

Alz,z_|I'"
14+ BI"*

logy.=- +CI Davies equation

Useful up to moderate ionic strengths (~0.5 mol/kg).

B (ion-size effect) and C (a linear correction; Cl) are dimensionless empirical parameters
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Focus 6: Chemical equilibrium
The equilibrium constant

ne response of equilibria to the conditions

T
Electrochemical cells
E

ectrode potentials



Reaction Gibbs Energy
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Reaction Gibbs Energy

dn, =+d¢.

5 extent of reaction

Gibbs energy, G

AG=0

= Pure reactants

Extent of reaction, &



Reaction Gibbs Energy

[f AG <0, the forward reaction is spontaneous. exergonic
If AG > 0, the reverse reaction is spontaneous. endergonic

[f AG =0, the reaction is at equilibrium.



Perfect Gas Equilibria A = B.

ArG=u’B_uA
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Perfect Gas Equilibria A = B.
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Standard Gibbs energy change:




Perfect Gas Equilibria A = B.

AG =, — 1, = (U + RTln p—) (L +RTIn ;’A

= AIG +RTIn ﬁB Standard Gibbs energy change:
A



Perfect Gas Equilibria A = B.
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Pa
Q= Py ‘reaction quotient’
Pa

Ratio of product to reactant pressures at any point in time
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Perfect Gas Equilibria A = B.

AG =, — 1, = (S +RTIn 2% — (u® + RTIn 22
p° p°
Ps
=AG +RTIn*%
Pa
=A G°+RT1nQ Q= g—ﬂ ‘reaction quotient’
A

Ratio of product to reactant pressures at any point in time

At equilibrium AG =0

0=AG°+RTInK K:(&)
p A equilibrium

AG = —=RTInK

r



Reaction quotient
o=Tla
1

_activities of products

Q

activities of reactants



Reaction quotient Example:

Q=] 4
j

2A+3B—>C+2D,

_activities of products
 activities of reactants

Q




Reaction quotient Example:

Q=] 4
j

2A+3B—>C+2D,

V, = =2, V;=-3, V. =+, and v, = +2.

_activities of products
 activities of reactants

Q




Reaction quotient Example:
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2A+3B—>C+2D,

V, = =2, V;=-3, V. =+, and v, = +2.
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Reaction quotient Example:

Q=] 4
j

2A+3B—>C+2D,

V,= =2, Vy=-3, V. =+]1, and v, =+2.

_activities of products
 activities of reactants

Q
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Reaction quotient At equilibrium,

Q=]1]a" K=| []a)
] J

equilibrium

_activities of products
~ activities of reactants thermodynamic equilibrium constant

Q

AG=AG +RTInQ

l

AG'= ) VAG - ) VAG®

Products Reactants



