Focus 1: Properties of gases **Perfect gas Kinetic model**

Real gases

Interactions!

Small separations Real gases

At high P, low T: Interactions are stronger

Interactions!

Isothermal or adiabatic?

Heat transfer: Heat is exchanged with the surroundings to keep the temperature constant (isothermal)Work Done: The work done on the gas is completely transferred as heat to the surroundings.

Heat transfer: Heat is exchanged with the surroundings to keep the temperature constant (isothermal)Work Done: The work done on the gas is completely transferred as heat to the surroundings.

Compression - Different isotherms

Compression - Different isotherms

Critical Temperature (C_T) Above this temperature, a gas cannot be liquefied by pressure alone

To describe the behavior of a real gas compared to an ideal gas under the same conditions of temperature and pressure

Molar volume ratio: real gas/perfect gas

Molar volume ratio: real gas/perfect gas

Molar volume ratio: real gas/perfect gas

 $Z = pV_{\rm m}/RT_{\rm f}$

Molar volume ratio: real gas/perfect gas

Molar volume ratio: real gas/perfect gas

 $Z = pV_{\rm m}/RT_{\rm m} \longrightarrow pV_{\rm m} = RTZ$

Perfect gas: Z =1 Can use to quantitate the deviation from perfect gas behavior

 $Z = pV_{\rm m}/RT$ $pV_{\rm m} = RTZ$

Perfect gas: Z =1

Can use to quantitate the deviation from perfect gas behavior

Hydrogen a "restless" molecule, even at low temperatures, due to its high zero-point energy!

Perfect gas: Z =1

Can use to quantitate the deviation from perfect gas behavior

$$pV_{\rm m} = RT(1 + B'p + C'p^2 + \cdots)$$

$$pV_{\rm m} = RT(1 + B'p + C'p^2 + \cdots)$$

$$pV_{\rm m} = RT \left(1 + \frac{B}{V_{\rm m}} + \frac{C}{V_{\rm m}^2} + \cdots \right)$$

 $pV_{\rm m} = RT(1 + B'p + C'p^2 + \cdots)$ $pV_{\rm m} = RTZ$ $pV_{\rm m} = RT \left(1 + \frac{B}{V_{\rm m}} + \frac{C}{V_{\rm m}^2} + \cdots \right)$

Table 1C.1 Second virial coefficients, B/(cm³ mol⁻¹)*

	Temperature	
	273 K	600 K
Ar	-21.7	11.9
CO ₂	-149.7	-12.4
N ₂	-10.5	21.7
Xe	-153.7	-19.6

* More values are given in the Resource section.

For real gases: The compression factor, Z, approaches 1 at low pressures, but does so with different slopes!

$$Z = 1 + \frac{B}{V_{\rm m}} + \frac{C}{V_{\rm m}^2} + \dots = 1 + B'p + C'p^2 + \dots$$

Pressure, p

For real gases: The compression factor, Z, approaches 1 at low pressures, but does so with different slopes!

$$Z = 1 + \frac{B}{V_{\rm m}} + \frac{C}{V_{\rm m}^2} + \dots = 1 + B'p + C'p^2 + \dots$$

For a perfect gas dZ/dp = 0

For real gases: The compression factor, Z, approaches 1 at low pressures, but does so with different slopes!

$$Z = 1 + \frac{B}{V_{\rm m}} + \frac{C}{V_{\rm m}^2} + \dots = 1 + B'p + C'p^2 + \dots$$

For a perfect gas dZ/dp = 0

but for a real gas $\frac{dZ}{dp} = B' + 2pC' + \cdots$

$$Z = 1 + \frac{B}{V_{\rm m}} + \frac{C}{V_{\rm m}^2} + \dots = 1 + B'p + C'p^2 + \dots$$

For a perfect gas dZ/dp = 0

but for a real gas $\frac{dZ}{dp} = B' + 2pC' + \dots \rightarrow B'$ as $p \rightarrow 0$

$$Z = 1 + \frac{B}{V_{\rm m}} + \frac{C}{V_{\rm m}^2} + \dots = 1 + B'p + C'p^2 + \dots$$

For a perfect gas dZ/dp = 0

but for a real gas $\frac{dZ}{dp} = B' + 2pC' + \dots \rightarrow B'$ as $p \rightarrow 0$

$$\frac{\mathrm{d}Z}{\mathrm{d}(1/V_{\mathrm{m}})} \to B \text{ as } V_{\mathrm{m}} \to \infty$$

$$Z = 1 + \frac{B}{V_{\rm m}} + \frac{C}{V_{\rm m}^2} + \dots = 1 + B'p + C'p^2 + \dots$$

For a perfect gas dZ/dp = 0

Pressure, p

but for a real gas $\frac{dZ}{dp} = B' + 2pC' + \dots \rightarrow B'$ as $p \rightarrow 0$ $\frac{dZ}{d(1/V_m)} \rightarrow B$ as $V_m \rightarrow \infty$

Because the virial coefficients depend on the temperature, there may be a temperature at which $Z \rightarrow 1$ with zero slope

$$Z = 1 + \frac{B}{V_{\rm m}} + \frac{C}{V_{\rm m}^2} + \dots = 1 + B'p + C'p^2 + \dots$$

For a perfect gas dZ/dp = 0

Pressure, p

but for a real gas $\frac{dZ}{dp} = B' + 2pC' + \dots \rightarrow B'$ as $p \rightarrow 0$ $\frac{dZ}{d(1/2)}$

$$\frac{\mathrm{d}Z}{\mathrm{d}(1/V_{\mathrm{m}})} \to B \text{ as } V_{\mathrm{m}} \to \infty$$

Boyle temperature => the temperature for which the B = 0

Because the virial coefficients depend on the temperature, there may be a temperature at which $Z \rightarrow 1$ with zero slope

$$Z = 1 + \frac{B}{V_{\rm m}} + \frac{C}{V_{\rm m}^2} + \dots = 1 + B'p + C'p^2 + \dots$$

For a perfect gas dZ/dp = 0

Pressure, p

but for a real gas $\frac{dZ}{dp} = B' + 2pC' + \dots \rightarrow B'$ as $p \rightarrow 0$ $\frac{dZ}{d(1/V_m)} \rightarrow B$ as $V_m \rightarrow \infty$

Boyle temperature => the temperature for which the B = 0

The properties of real gases coincide with those of a perfect gas at T_B for a more extended range of pressures than at other temperatures

critical temperature, T_c

critical temperature, T_c

critical pressure, **p**_c

critical molar volume, V_c

critical temperature, T_c

critical constants

critical pressure, **p**_c

critical molar volume, V_c

Factors that influence the critical constants:

- 1. Intermolecular Forces
- 2. Molecular Size and Molar Mass
- 3. Molecular Shape
- 4. Polarity and Dipole Moment
- 5. Hydrogen Bonding
- 6. Molecular Symmetry
- 7. Degree of Unsaturation (Double/Triple Bonds)
- 8. Compressibility and Molar Density
- 9. Polarizability

critical constants

critical temperature, T_c

CO₂

critical pressure, \mathbf{p}_{c}

critical molar volume, V_c

critical molar volume, V_c

properties of a substance at its critical point, where the distinction between the liquid and gas phases disappears.

0.6

