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Although solubility is not a colligative property—since it
depends on the identity of the solute—it can sometimes '
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be estimated using similar principles.
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Solubility - Not a Colligative property

ty(s) = ui(l) + RTInxy
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Solubility of a solid solute B in a liquid solvent A
(assuming ideal solution behavior)

Can not predict different solubilities in different solvents
(no solvent properties in the equation)



Solubility - Not a Colligative property

B
dissolved in

i (solution)
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Individual curves are labelled with the value of A, H/RT*.
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Solubility

Calculate the ideal solubility of naphthalene in benzene at 20 °C by noting that the
enthalpy of fusion of naphthalene is 18.80 kimol~ and its melting point is 354 K.
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Solubility

Calculate the ideal solubility of naphthalene in benzene at 20 °C by noting that the
enthalpy of fusion of naphthalene is 18.80 kimol~ and its melting point is 354 K.

Inx, = %H( 1 1 )

R \T, T
| ~ 1.880x10" Jmol ™ [ 1 1) [ 3
nx“aphtha]““_8.3145]K—1m01—‘ 354K 293K )~ T
xnaphthalene = 026

molality ~ 4.5molkg™
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Osmosis
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Osmosis
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L (p) = Uu(x,, p + 1)
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Osmosis

L (p) = Uu(x,, p + 1)

!

w,(x,, p+ IT) = wi(p + IT) + RTnx,

wi(p) = wi(p+II)+ RTlnx,
ui(p+IT) = u¥(p) — RTlnx,

effect of pressure on the chemical potential,

Gu(P)=Gu(p)+ ] Vidp

I1
Wip+M=pi(p)+] " V,dp
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Osmosis

Ly (p) = Uy(x,, p + 1)

!

Ha(xy, p+ 11) = ui(p + I1) + RTIn x,,

(i(p) = 1X(p + IT) + RT1nx,
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Osmosis

RTx, =11V _
When the solution is dilute, x, = ng/n,,
RTn,=n, I1V_

HAVm = V, the total volume of the solvent

RTn,=I1V

ng/V is the molar concentration of the solute B, [B]

H = [B]JRT van 't Hoft equation Valid only for ideal solutions

l concentration of solute Assumes ideal behavior of solute particles in solution

Osmotic pressure



After being stranded on a desert island,
Pirate Salty Sam gets excited when he finds
plenty of sea water and starts chugging it
like it’s coconut juice. A few hours later, he’s
more dehydrated than before, his parrot is
concerned, and he’s starting to hallucinate
a talking sea cucumber.

Drink some
fresh water,

LAW - Don't Drink the Sea, Matey!

classroom-to-real-world



After being stranded on a desert island,
Pirate Salty Sam gets excited when he finds
plenty of sea water and starts chugging it
like it’s coconut juice. A few hours later, he’s
more dehydrated than before, his parrot is
concerned, and he’s starting to hallucinate
a talking sea cucumber.

Drink some
fresh water,

LAW - Don't Drink the Sea, Matey!

Using your knowledge of osmosis, explain:

1. What happened to Salty Sam’s cells after
drinking sea water?

2. Why didn’t drinking all that water actually
help?

3. What should he have done instead (besides
not becoming a pirate)?

classroom-to-real-world
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Osmotic virial expansion

An extension of the ideal osmotic pressure equation

1 = Higea] + Boc + Bsc? + Byc® + . ..

A
/ |

osmotic pressure
predicted by the ideal
solution model

c = concentration of solute particles

B,,B;, B,,... are the second, third, fourth, etc., osmotic virial coefficients



Focus 5: Simple mixtures

TD description of mixtures

Properties of solutions

D

D
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nase diagrams of binary systems

nase diagrams of ternary systems

nermodynamic activity
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Total Vapor Pressure vs X,
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Total Vapor Pressure vs X,

Raoult’slaw  Pa=X,Px

Pp=XpP5

At some fixed temperature Xg=1-x,

P=patPy=X\PX + X3Py =i+ (PX — PB4

Composition of vapour
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Total Vapor Pressure vs X,
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Total Vapor Pressure vs Y,

p=ps+(pX—pp)x,
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Total Vapor Pressure vs Y,

p= PaPs

% * *
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Individual curves are labeled with the value of p,*/pg*



