

$$\xi = \frac{H^{\rm E}}{RTx_{\rm A}x_{\rm B}}$$

$$\xi = \frac{H^{\rm E}}{RTx_{\rm A}x_{\rm B}} = \frac{701\,\mathrm{J\,mol^{-1}}}{(8.3145\,\mathrm{J\,K^{-1}\,mol^{-1}}) \times (298\,\mathrm{K}) \times \frac{1}{2} \times \frac{1}{2}}$$

$$\xi = \frac{H^{\rm E}}{RTx_{\rm A}x_{\rm B}} = \frac{701 \,\mathrm{J}\,\mathrm{mol}^{-1}}{(8.3145 \,\mathrm{JK}^{-1}\,\mathrm{mol}^{-1}) \times (298 \,\mathrm{K}) \times \frac{1}{2} \times \frac{1}{2}}$$
$$= 1.13$$

$$\xi = \frac{H^{E}}{RTx_{A}x_{B}} = \frac{701 \,\text{J}\,\text{mol}^{-1}}{(8.3145 \,\text{J}\,\text{K}^{-1}\,\text{mol}^{-1}) \times (298 \,\text{K}) \times \frac{1}{2} \times \frac{1}{2}}$$
$$= 1.13$$

$$\Delta_{\min}G = nRT(x_{\rm A}\ln x_{\rm A} + x_{\rm B}\ln x_{\rm B} + \xi x_{\rm A}x_{\rm B})$$

$$\xi = \frac{H^{E}}{RTx_{A}x_{B}} = \frac{701 \,\text{J}\,\text{mol}^{-1}}{(8.3145 \,\text{J}\,\text{K}^{-1} \,\text{mol}^{-1}) \times (298 \,\text{K}) \times \frac{1}{2} \times \frac{1}{2}}$$
$$= 1.13$$

$$\Delta_{\min} G = nRT(x_{A}\ln x_{A} + x_{B}\ln x_{B} + \xi x_{A}x_{B})$$
$$\Delta_{\min} G/n = \frac{1}{2}RT\ln\frac{1}{2} + \frac{1}{2}RT\ln\frac{1}{2} + 701 \text{ J mol}^{-1}$$

$$\xi = \frac{H^{E}}{RTx_{A}x_{B}} = \frac{701 \,\mathrm{J}\,\mathrm{mol}^{-1}}{(8.3145 \,\mathrm{JK}^{-1}\,\mathrm{mol}^{-1}) \times (298 \,\mathrm{K}) \times \frac{1}{2} \times \frac{1}{2}}$$
$$= 1.13$$
$$\Delta_{\mathrm{mix}}G = nRT(x_{A}\ln x_{A} + x_{B}\ln x_{B} + \xi x_{A}x_{B})$$

$$\Delta_{\rm mix} G/n = \frac{1}{2} RT \ln \frac{1}{2} + \frac{1}{2} RT \ln \frac{1}{2} + 701 \,\mathrm{J} \,\mathrm{mol}^{-1}$$
$$= -1.02 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

Colligative properties

...depends on the relative number of solute particles present but not their chemical identity

Colligative properties

...depends on the relative number of solute particles present but not their chemical identity

- vapor pressure lowering
- boiling point elevation
- freezing point depression
- osmotic pressure

Temperature, T

Temperature, T

This occurs even in ideal solutions

This occurs even in ideal solutions

An entropy effect!

This occurs even in ideal solutions

An entropy effect!

This occurs even in ideal solutions

An entropy effect!

Solute: An additional contribution to the entropy => weaker tendency to form the vapor => raises the boiling point

This occurs even in ideal solutions

An entropy effect!

Solute: An additional contribution to the entropy => weaker tendency to form the vapor => raises the boiling point

Solute: An enhanced molecular randomness in solution => opposes the tendency to freeze => requires lower temperature => lowers the FP

The elevation in boiling point (ΔT) is directly proportional to the molality of the solute (m_B)

 $\mu_{\rm A} = \mu_{\rm A}^{\star} + RT\ln x_{\rm A}$

 $\mu_{\rm A} = \mu_{\rm A}^{\star} + RT\ln x_{\rm A}$

Assume B is non-volatile

 $\mu_{\rm A} = \mu_{\rm A}^{\star} + RT\ln x_{\rm A}$

 $\mu_{\rm A}^{\star}(g) = \mu_{\rm A}^{\star}(1) + RT \ln x_{\rm A}$

Assume B is non-volatile

 $\mu_{\rm A} = \mu_{\rm A}^{\star} + RT\ln x_{\rm A}$

 $\mu_{\rm A}^{\star}(g) = \mu_{\rm A}^{\star}(1) + RT \ln x_{\rm A}$

$$\ln x_{\rm A} = \frac{\mu_{\rm A}^{\star}(g) - \mu_{\rm A}^{\star}(l)}{RT}$$

 $\mu_{\rm A} = \mu_{\rm A}^{\star} + RT\ln x_{\rm A}$

 $\mu_{\rm A}^{\star}(g) = \mu_{\rm A}^{\star}(1) + RT \ln x_{\rm A}$

$$\ln x_{\rm A} = \frac{\mu_{\rm A}^{\star}(g) - \mu_{\rm A}^{\star}(l)}{RT} = \frac{\Delta_{\rm vap}G}{RT}$$

 $\mu_{\rm A} = \mu_{\rm A}^{\star} + RT \ln x_{\rm A}$

 $\mu_{\rm A}^{\star}(g) = \mu_{\rm A}^{\star}(l) + RT \ln x_{\rm A}$

$$\ln x_{\rm A} = \frac{\mu_{\rm A}^{\star}(g) - \mu_{\rm A}^{\star}(l)}{RT} = \frac{\Delta_{\rm vap}G}{RT}$$

Variation with T:

$$\frac{d\ln x_{\rm A}}{dT} = \frac{1}{R} \frac{d(\Delta_{\rm vap} G/T)}{dT}$$

 $\mu_{\rm A} = \mu_{\rm A}^{\star} + RT \ln x_{\rm A}$

 $\mu_{\rm A}^{\star}(g) = \mu_{\rm A}^{\star}(l) + RT \ln x_{\rm A}$

$$\ln x_{\rm A} = \frac{\mu_{\rm A}^{\star}(g) - \mu_{\rm A}^{\star}(l)}{RT} = \frac{\Delta_{\rm vap}G}{RT}$$

Variation with T:

$$\frac{d\ln x_{\rm A}}{dT} = \frac{1}{R} \frac{d(\Delta_{\rm vap} G/T)}{dT}$$

$$-\left(\frac{\partial G/T}{\partial T}\right)_{p} = -\frac{H}{T^{2}}$$
(3E.10)

Gibbs-Helmholtz equation

 $\mu_{\rm A} = \mu_{\rm A}^{\star} + RT \ln x_{\rm A}$

 $\mu_{\rm A}^{\star}(g) = \mu_{\rm A}^{\star}(l) + RT \ln x_{\rm A}$

$$\ln x_{\rm A} = \frac{\mu_{\rm A}^{\star}(g) - \mu_{\rm A}^{\star}(l)}{RT} = \frac{\Delta_{\rm vap}G}{RT}$$

Variation with T:

$$\frac{d\ln x_{\rm A}}{dT} = \frac{1}{R} \frac{d(\Delta_{\rm vap} G/T)}{dT}$$

 $(\partial (G/T)/\partial T)_p = -H/T^2$ Gibbs–Helmholtz equation

$$\frac{d\ln x_{\rm A}}{dT} = \frac{1}{R} \frac{d(\Delta_{\rm vap}G/T)}{dT} = -\frac{\Delta_{\rm vap}H}{RT^2}$$

 $\mu_{\rm A} = \mu_{\rm A}^{\star} + RT\ln x_{\rm A}$

 $\mu_{\rm A}^{\star}(g) = \mu_{\rm A}^{\star}(1) + RT \ln x_{\rm A}$

$$\frac{\ln x_{A}}{dT} = \frac{\mu_{A}^{*}(g) - \mu_{A}^{*}(l)}{RT} = \frac{\Delta_{vap}G}{RT}$$
$$\frac{d\ln x_{A}}{dT} = \frac{1}{R} \frac{d(\Delta_{vap}G/T)}{dT}$$

 $(\partial (G/T)/\partial T)_p = -H/T^2$ Gibbs-Helmholtz equation

$$\frac{d\ln x_{\rm A}}{dT} = \frac{1}{R} \frac{d(\Delta_{\rm vap}G/T)}{dT} = -\frac{\Delta_{\rm vap}H}{RT^2}$$

 $\mu_{\rm A} = \mu_{\rm A}^{\star} + RT \ln x_{\rm A}$

 $\mu_{\rm A}^{\star}(g) = \mu_{\rm A}^{\star}(1) + RT \ln x_{\rm A}$

$$\ln x_{A} = \frac{\mu_{A}^{*}(g) - \mu_{A}^{*}(l)}{RT} = \frac{\Delta_{vap}G}{RT}$$
$$\frac{d\ln x_{A}}{dT} = \frac{1}{R} \frac{d(\Delta_{vap}G/T)}{dT}$$

 $(\partial (G/T)/\partial T)_p = -H/T^2$ Gibbs-Helmholtz equation

$$\frac{d\ln x_{\rm A}}{dT} = \frac{1}{R} \frac{d(\Delta_{\rm vap}G/T)}{dT} = -\frac{\Delta_{\rm vap}H}{RT^2}$$

$$\int_{0}^{\ln x_{A}} d\ln x_{A}' = -\frac{1}{R} \int_{T^{*}}^{T} \frac{\Delta_{\text{vap}} H}{T'^{2}} dT'$$

 $dT = \frac{R}{R}$

 $\mu_{\rm A} = \mu_{\rm A}^{\star} + RT\ln x_{\rm A}$

 $\mu_{\rm A}^{\star}(g) = \mu_{\rm A}^{\star}(l) + RT \ln x_{\rm A}$

$$\ln x_{A} = \frac{\mu_{A}^{*}(g) - \mu_{A}^{*}(l)}{RT} = \frac{\Delta_{vap}G}{RT}$$
$$d\ln x_{A} = \frac{1}{1} d(\Delta_{vap}G/T)$$

 $\mathrm{d}T$

 $(\partial (G/T)/\partial T)_p = -H/T^2$ Gibbs-Helmholtz equation

$$\frac{d\ln x_{\rm A}}{dT} = \frac{1}{R} \frac{d(\Delta_{\rm vap}G/T)}{dT} = -\frac{\Delta_{\rm vap}H}{RT^2}$$

$$\int_{0}^{\ln x_{\rm A}} d\ln x_{\rm A}' = -\frac{1}{R} \int_{T^*}^{T} \frac{\Delta_{\rm vap} H}{T'^2} dT'$$

$$\ln(1-x_{\rm B}) = -\frac{\Delta_{\rm vap}H}{R} \int_{T^*}^T \frac{1}{T'^2} dT'$$

Enthalpy of vaporization is assumed to be constant over the small range of temperature

 $\mu_{\rm A} = \mu_{\rm A}^{\star} + RT\ln x_{\rm A}$

 $\mu_{\rm A}^{\star}(g) = \mu_{\rm A}^{\star}(l) + RT \ln x_{\rm A}$

$$\frac{\ln x_{\rm A}}{dT} = \frac{\mu_{\rm A}^{\star}(g) - \mu_{\rm A}^{\star}(1)}{RT} = \frac{\Delta_{\rm vap}G}{RT}$$
$$\frac{d\ln x_{\rm A}}{dT} = \frac{1}{R} \frac{d(\Delta_{\rm vap}G/T)}{dT}$$

 $(\partial (G/T)/\partial T)_p = -H/T^2$ Gibbs-Helmholtz equation

$$\frac{d\ln x_{\rm A}}{dT} = \frac{1}{R} \frac{d(\Delta_{\rm vap}G/T)}{dT} = -\frac{\Delta_{\rm vap}H}{RT^2}$$

$$\int_{0}^{\ln x_{A}} d\ln x_{A}' = -\frac{1}{R} \int_{T^{*}}^{T} \frac{\Delta_{\text{vap}} H}{T'^{2}} dT'$$

$$\ln(1-x_{\rm B}) = -\frac{\Delta_{\rm vap}H}{R} \int_{T^*}^{T} \frac{1}{T'^2} dT'$$

$$\ln(1-x_{\rm B}) = \frac{\Delta_{\rm vap}H}{R} \left(\frac{1}{T} - \frac{1}{T^*}\right)$$

$$\ln(1-x_{\rm B}) = \frac{\Delta_{\rm vap}H}{R} \left(\frac{1}{T} - \frac{1}{T^*}\right)$$

$$\ln(1-x_{\rm B}) = \frac{\Delta_{\rm vap}H}{R} \left(\frac{1}{T} - \frac{1}{T^*}\right)$$

Suppose, $x_B \ll 1$; the approximation $\ln(1 - x) \approx -x$

The Taylor series for $\ln(1-x)$ around x = 0 is: $\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \cdots$ So if x is small, then: • x^2, x^3, \ldots are even smaller, and can be neglected. • That means: $\ln(1-x) \approx -x$

$$\ln(1-x_{\rm B}) = \frac{\Delta_{\rm vap}H}{R} \left(\frac{1}{T} - \frac{1}{T^*}\right)$$

Suppose, $x_B \ll 1$; the approximation $\ln(1 - x) \approx -x$

$$x_{\rm B} = \frac{\Delta_{\rm vap} H}{R} \left(\frac{1}{T^*} - \frac{1}{T} \right)$$

$$\ln(1-x_{\rm B}) = \frac{\Delta_{\rm vap}H}{R} \left(\frac{1}{T} - \frac{1}{T^*}\right)$$

Suppose, $x_B \ll 1$; the approximation $\ln(1 - x) \approx -x$

$$x_{\rm B} = \frac{\Delta_{\rm vap} H}{R} \left(\frac{1}{T^*} - \frac{1}{T} \right)$$

increase in the boiling point is small

$$\frac{1}{T^{*}} - \frac{1}{T} = \frac{T - T^{*}}{TT^{*}} \approx \frac{T - T^{*}}{T^{*^{2}}} = \frac{\Delta T_{b}}{T^{*^{2}}}$$

$$\ln(1-x_{\rm B}) = \frac{\Delta_{\rm vap}H}{R} \left(\frac{1}{T} - \frac{1}{T^*}\right)$$

$$x_{\rm B} = \frac{\Delta_{\rm vap} H}{R} \times \frac{\Delta T_{\rm b}}{T^{\star 2}}$$

Suppose, $x_B \ll 1$; the approximation $\ln(1 - x) \approx -x$

$$x_{\rm B} = \frac{\Delta_{\rm vap} H}{R} \left(\frac{1}{T^*} - \frac{1}{T} \right)$$

increase in the boiling point is small

$$\frac{1}{T^*} - \frac{1}{T} = \frac{T - T^*}{TT^*} \approx \frac{T - T^*}{T^{*2}} = \frac{\Delta T_{\rm b}}{T^{*2}}$$

$$\ln(1-x_{\rm B}) = \frac{\Delta_{\rm vap}H}{R} \left(\frac{1}{T} - \frac{1}{T^*}\right)$$

Suppose, $x_B \ll 1$; the approximation $\ln(1 - x) \approx -x$

$$x_{\rm B} = \frac{\Delta_{\rm vap} H}{R} \left(\frac{1}{T^*} - \frac{1}{T} \right)$$

increase in the boiling point is small

$$\frac{1}{T^*} - \frac{1}{T} = \frac{T - T^*}{TT^*} \approx \frac{T - T^*}{T^{*2}} = \frac{\Delta T_{\rm b}}{T^{*2}}$$

$$x_{\rm B} = \frac{\Delta_{\rm vap} H}{R} \times \frac{\Delta T_{\rm b}}{T^{\star 2}}$$

$$\Delta T_{\rm b} = K x_{\rm B} \quad K = \frac{RT^{\star 2}}{\Delta_{\rm vap} H}$$

$$\ln(1-x_{\rm B}) = \frac{\Delta_{\rm vap}H}{R} \left(\frac{1}{T} - \frac{1}{T^*}\right)$$

Suppose, $x_B \ll 1$; the approximation $\ln(1 - x) \approx -x$

$$x_{\rm B} = \frac{\Delta_{\rm vap} H}{R} \left(\frac{1}{T^*} - \frac{1}{T} \right)$$

$$x_{\rm B} = \frac{\Delta_{\rm vap} H}{R} \times \frac{\Delta T_{\rm b}}{T^{\star 2}}$$

$$\Delta T_{\rm b} = K x_{\rm B} \quad K = \frac{RT^{\star 2}}{\Delta_{\rm vap} H}$$

increase in the boiling point is small

$$\frac{1}{T^{*}} - \frac{1}{T} = \frac{T - T^{*}}{TT^{*}} \approx \frac{T - T^{*}}{T^{*^{2}}} = \frac{\Delta T_{b}}{T^{*^{2}}}$$

$$b = rac{\mathrm{mol}}{kg}$$

 b = molality
 mol = moles of solute
 kg = kilogram of solvent

 $X_B \ll 1$, X_B is proportional to its molality, b

When the solution is dilute, the mole fraction of solute is approximately proportional to molality:

$$x_B = rac{n_B}{n_A + n_B}$$

$$ext{If } n_B \ll n_A, ext{ then } x_B pprox rac{n_B}{n_A}$$

$$m=rac{n_B}{M_A\cdot n_A}$$

$$rac{n_B}{n_A} = m \cdot M_A$$

$$x_B pprox m \cdot M_A$$

$$\ln(1-x_{\rm B}) = \frac{\Delta_{\rm vap}H}{R} \left(\frac{1}{T} - \frac{1}{T^*}\right)$$

Suppose, $x_B \ll 1$; the approximation $\ln(1 - x) \approx -x$

$$x_{\rm B} = \frac{\Delta_{\rm vap} H}{R} \left(\frac{1}{T^*} - \frac{1}{T} \right)$$

$$x_{\rm B} = \frac{\Delta_{\rm vap} H}{R} \times \frac{\Delta T_{\rm b}}{T^{\star 2}}$$

$$\Delta T_{\rm b} = K x_{\rm B} \quad K = \frac{RT^{\star 2}}{\Delta_{\rm vap} H}$$

 $X_B << 1$, X_B is proportional to its molality, b

increase in the boiling point is small

 $b = \frac{\text{mol}}{kg}$ $\Delta T_b = K_b b$ b = molality mol = moles of solutekg = kilogram of solvent

$$\frac{1}{T^*} - \frac{1}{T} = \frac{T - T^*}{TT^*} \approx \frac{T - T^*}{T^{*2}} = \frac{\Delta T_{\rm b}}{T^{*2}}$$

$$\ln(1-x_{\rm B}) = \frac{\Delta_{\rm vap}H}{R} \left(\frac{1}{T} - \frac{1}{T^*}\right)$$

Suppose, $x_B \ll 1$; the approximation $\ln(1 - x) \approx -x$

$$x_{\rm B} = \frac{\Delta_{\rm vap} H}{R} \left(\frac{1}{T^*} - \frac{1}{T} \right)$$

 $\frac{1}{T^{*}} - \frac{1}{T} = \frac{T - T^{*}}{TT^{*}} \approx \frac{T - T^{*}}{T^{*^{2}}} = \frac{\Delta T_{\rm b}}{T^{*^{2}}}$

$$x_{\rm B} = \frac{\Delta_{\rm vap} H}{R} \times \frac{\Delta T_{\rm b}}{T^{\star 2}}$$

$$\Delta T_{\rm b} = K x_{\rm B} \quad K = \frac{RT^{\star 2}}{\Delta_{\rm vap} H}$$

 $X_B \ll 1$, X_B is proportional to its molality, b

 $\Delta T_{\rm b} = K_{\rm b} b$

empirical boiling-point constant

$$\ln(1-x_{\rm B}) = \frac{\Delta_{\rm vap}H}{R} \left(\frac{1}{T} - \frac{1}{T^*}\right)$$

Suppose, $x_B \ll 1$; the approximation $\ln(1 - x) \approx -x$

$$x_{\rm B} = \frac{\Delta_{\rm vap} H}{R} \left(\frac{1}{T^*} - \frac{1}{T} \right)$$

increase in the boiling point is small

$$\frac{1}{T^*} - \frac{1}{T} = \frac{T - T^*}{TT^*} \approx \frac{T - T^*}{T^{*2}} = \frac{\Delta T_{\rm b}}{T^{*2}}$$

$$x_{\rm B} = \frac{\Delta_{\rm vap} H}{R} \times \frac{\Delta T_{\rm b}}{T^{\star 2}}$$

$$\Delta T_{\rm b} = K x_{\rm B} \quad K = \frac{RT^{\star 2}}{\Delta_{\rm vap} H}$$

 $X_B \ll 1$, X_B is proportional to its molality, b

$$\Delta T_{\rm b} = K_{\rm b} b$$

No reference to the identity of the solute; thus, a colligative property!

The change in bp depends on the solvent.

empirical boiling-point constant

 $\Delta T_{b} = K_{b}b$ $K = \frac{RT^{*2}}{\Delta_{vap}H}$

The change in bp depends on the solvent.

empirical boiling-point constant

	$K_{\rm f}/({\rm Kkgmol^{-1}})$	$K_{\rm b}/({\rm Kkgmol^{-1}})$
Benzene	5.12	2.53
Camphor	40	
Phenol	7.27	3.04
Water	1.86	0.51

	Eleva	tion	of	BP
--	-------	------	----	----

 $\Delta T_{\rm b} = K_{\rm b} b$

empirical boiling-point constant

	$K_{\rm f}/({\rm Kkgmol^{-1}})$	$K_{\rm b}/({\rm Kkgmol^{-1}})$
Benzene	5.12	2.53
Camphor	40	
Phenol	7.27	3.04
Water	1.86	0.51

What is the elevation of the BP of

1) Water

2) Benzene

When a solute is present at a molality of 0.10 mol kg⁻¹

Elevation o	f B	P

 $\Delta T_{\rm b} = K_{\rm b} b$

empirical boiling-point constant

	$K_{\rm f}/({\rm Kkgmol^{-1}})$	$K_{\rm b}/({\rm Kkgmol^{-1}})$
Benzene	5.12	2.53
Camphor	40	
Phenol	7.27	3.04
Water	1.86	0.51

What is the elevation of the BP of

- 1) Water 0.051 к
- 2) Benzene 0.25 K

When a solute is present at a molality of 0.10 mol kg⁻¹

 $\mu_{\rm A}^{\star}(s) = \mu_{\rm A}^{\star}(1) + RT \ln x_{\rm A}$

BP elevation

$$\mu_{\rm A}^{\star}(s) = \mu_{\rm A}^{\star}(1) + RT \ln x_{\rm A}$$

$$\mu_{\rm A}^{\star}(g) = \mu_{\rm A}^{\star}(l) + RT \ln x_{\rm A}$$

 $\mu_{\rm A}^{\star}(s) = \mu_{\rm A}^{\star}(1) + RT \ln x_{\rm A}$

BP elevation

$$\mu_{\rm A}^{\star}(g) = \mu_{\rm A}^{\star}(1) + RT \ln x_{\rm A}$$

$$\Delta T_{\rm b} = K x_{\rm B} \quad K = \frac{RT^{\star 2}}{\Delta_{\rm vap} H}$$

$$\mu_{\rm A}^{\star}(s) = \mu_{\rm A}^{\star}(1) + RT \ln x_{\rm A}$$

BP elevation

$$\mu_{\rm A}^{\star}(g) = \mu_{\rm A}^{\star}(1) + RT \ln x_{\rm A}$$

$$\Delta T_{\rm f} = K' x_{\rm B} \quad K' = \frac{RT^{\star 2}}{\Delta_{\rm fus} H}$$

$$\Delta T_{\rm b} = K x_{\rm B} \quad K = \frac{RT^{\star 2}}{\Delta_{\rm vap} H}$$

$$\mu_{A}^{*}(s) = \mu_{A}^{*}(l) + RT \ln x_{A} \qquad \qquad \mu_{A}^{*}(g) = \mu_{A}^{*}(l) + RT \ln x_{A}$$

$$\Delta T_{\rm f} = K' x_{\rm B} \quad K' = \frac{RT^{\star 2}}{\Delta_{\rm fus} H} \qquad \Delta T_{\rm b} = K x_{\rm B} \quad K = \frac{RT^{\star 2}}{\Delta_{\rm vap} H}$$

 T^* is the freezing point of the pure liquid Δ_{fus} H is the enthalpy of fusion of the solvent

$$\mu_{A}^{*}(s) = \mu_{A}^{*}(l) + RT \ln x_{A} \qquad \qquad \mu_{A}^{*}(g) = \mu_{A}^{*}(l) + RT \ln x_{A}$$

$$\Delta T_{\rm f} = K' x_{\rm B} \quad K' = \frac{RT^{\star 2}}{\Delta_{\rm fus} H} \qquad \Delta T_{\rm b} = K x_{\rm B} \quad K = \frac{RT^{\star 2}}{\Delta_{\rm vap} H}$$

 T^* is the freezing point of the pure liquid $\Delta_{fus}H$ is the enthalpy of fusion of the solvent

When the solution is dilute,

 $\Delta T_{\rm f} = K_{\rm f} b$

K_f is the empirical freezing-point constant b is the molality of the solute

	$K_{\rm f}/({\rm Kkgmol^{-1}})$	$K_{\rm b}/({\rm Kkgmol^{-1}})$
Benzene	5.12	2.53
Camphor	40	
Phenol	7.27	3.04
Water	1.86	0.51

What is the depression of the FP of

1) Water

2) Benzene

 $\Delta T_{\rm f} = K_{\rm f} b$

When a solute is present at a molality of 0.10 mol kg⁻¹

	$K_{\rm f}/({ m Kkgmol^{-1}})$	$K_{\rm b}/({\rm Kkgmol^{-1}})$
Benzene	5.12	2.53
Camphor	40	
Phenol	7.27	3.04
Water	1.86	0.51

What is the depression of the FP of

1) Water 0.186 K

 $\Delta T_{\rm f} = K_{\rm f} b$

2) Benzene **0.51 K**

When a solute is present at a molality of 0.10 mol kg⁻¹

			$K_{\rm f}/({ m Kkgmol^{-1}})$	$K_{\rm b}/({\rm Kkgmol^{-1}})$
$\Delta T_{\rm f} = K_{\rm f} b$		Benzene	5.12	2.53
		Camphor	40	
		Phenol	7.27	3.04
		Water	1.86	0.51
What is the depre 1) Water 2) Benzene	ssion of the FP of 0.186 K 0.51 K	ВР 0.051 К 0.25 К		

When a solute is present at a molality of 0.10 mol kg⁻¹

Freezing requires precise molecular ordering (forming a solid lattice), which is more easily disrupted by solute particles than the process of molecules escaping to vapor.