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Identify the value of the parameter & that would be appropriate —~ f %%ﬁ
to model a mixture of benzene and cyclohexane at 25°C, and E400
estimate the Gibbs energy of mixing for an equimolar mixture. * j
ﬂﬂf 0.5
H* 701] mol ™ @) XCH,

ST RTx,x, ~ (83145JK mol )x(298K)xix1

=1.13
A G =nRT(x,Inx,+x;Inx,+ Ex, x;)

A_. G/n=1RTInil +iRTIni + 701 mol™

=—1.02kJ mol™
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Colligative properties

..depends on the relative number of solute particles present but
not their chemical identity

* vapor pressure lowering
¢ boiling point elevation
* freezing point depression

* osmotic pressure
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pure u, = Hy

with solute B U, = uy + RTlnx,
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FP depression and BP elevation
This occurs even in ideal solutions
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This occurs even in ideal solutions

An entropy effect!
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FP depression and BP elevation
This occurs even in ideal solutions

An entropy effect!

Solute: An additional contribution to the entropy => weaker tendency to form
the vapor => raises the boiling point

Solute: An enhanced molecular randomness in solution => opposes the
tendency to freeze => requires lower temperature => lowers the FP



Elevation of BP

The elevation in boiling point (AT) is directly proportional to the molality of the solute (m;)
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Elevation of BP
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Enthalpy of vaporization is assumed to be
constant over the small range of temperature
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Elevation of BP
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Suppose, Xz << 1; the approximation In(1 - x) = -x

So if x is small, then:
. :.[‘.2.. :t:‘g, ... are even smaller, and can be neglected.

¢ That means:

In(l —z) =~ —x
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Elevation of BP
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Elevation of BP

In(1-x,)= A‘E"H( L 1 ]

T T*
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Suppose, Xz << 1; the approximation In(1 - x) = -x
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increase in the boiling point is small Xg << 1, Xy is proportional to its molality, b
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b = molality

mol = moles of solute

kg - kilogram of solvent




When the solution is dilute, the mole fraction of solute is
approximately proportional to molality:
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Elevation of BP
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Elevation of BP

In(1-x,)= A‘E"H( L 1 ]

T T*

H
Xy = Ay X ﬂTE
R T*

Suppose, Xz << 1; the approximation In(1 - x) = -x

RT*

_AvapH 1 _1 ATh:KXB k= ‘&vapH
BT TR \T* T

X

increase in the boiling point is small Xg << 1, Xy is proportional to its molality, b

1 1 T-T* T-T* AT, , _mol AT —K b
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r< T TIT* T T* kg l
b = molality
' mol = moles of solute empirical boiling-point constant

kg - kilogram of solvent



Elevation of BP
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Suppose, Xz << 1; the approximation In(1 - x) = -x
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increase in the boiling point is small

1 1 _T-T* T-T* AT,
T* T~ TT* =~ T#** ~ Tx?

H
Xp= A\rap X ﬂTE
R T*

RT*

AszKxE K:m

Xg << 1, X; is proportional to its molality, b

AT, =K,b

No reference to the identity of the solute;
thus, a colligative property!
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Water 1.86 0.51
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Elevation of BP K/(Kkgmol ™) K./(Kkgmol )

Benzene 5.12 2.53
AT, =K, b |
Camphor 40
l Phenol 7.27 3.04
Water 1.86 0.51

empirical boiling-point constant

What is the elevation of the BP of

1) Water 0.051 K
2) Benzene  0.25K

When a solute is present at a molality of 0.10 mol kg!
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AT;=K%, K'=3—p AT=Kx, K=3 g



Depression of Freezing Point

pi(s)=p;()+RTInx, t,(g)=u 1)+ RTInx,
, , RT* ~ ~ RT*
AT;=K%, K'=3—p AT=Kx, K=3 g

T* is the freezing point of the pure liquid
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Depression of Freezing Point

pi(s)=p;()+RTInx, t,(g)=u 1)+ RTInx,
, , RT* ~ ~ RT*
AT;=K%, K'=3—p AT=Kx, K=3 g

T* is the freezing point of the pure liquid

Aq H is the enthalpy of fusion of the solvent

When the solution is dilute,

K; is the empirical freezing-point constant
ATl = be b is the molality of the solute
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Depression of Freezing Point

K/(Kkgmol™) K,/(Kkgmol™)
Benzene 5.12 2.53
AT-=K.b Camphor 40
' ' Phenol 7.27 3.04

Water 1.86 0.51

What is the depression of the FP of — BP —

1) Water 0.186 K 0.051 K

2) Benzene 0.51 K 0.25 K

When a solute is present at a molality of 0.10 mol kg™

Freezing requires precise molecular ordering (forming a solid lattice), which is more
easily disrupted by solute particles than the process of molecules escaping to vapor.



