

 $\mu(\alpha;p,T) = \mu(\beta;p,T)$

 $\mu(\alpha; p, T) = \mu(\beta; p, T) \qquad d\mu(\alpha) = d\mu(\beta).$

$$\mathrm{d}G = V\mathrm{d}p - S\mathrm{d}T$$

 $\mu(\alpha; p, T) = \mu(\beta; p, T) \qquad d\mu(\alpha) = d\mu(\beta).$

$$dG = Vdp - SdT$$
$$d\mu = V_{\rm m}dp - S_{\rm m}dT$$

 $\mu(\alpha; p, T) = \mu(\beta; p, T) \qquad d\mu(\alpha) = d\mu(\beta).$

$$dG = Vdp - SdT$$
$$d\mu = V_{\rm m}dp - S_{\rm m}dT$$

 $\mu(\alpha; p, T) = \mu(\beta; p, T)$

$$d\mu(\alpha) = d\mu(\beta).$$

Temperature, T

 $d\mu(\alpha) = d\mu(\beta)$

$$dG = Vdp - SdT$$
$$d\mu = V_{\rm m}dp - S_{\rm m}dT$$

 $\mu(\alpha; p, T) = \mu(\beta; p, T)$

$$d\mu(\alpha) = d\mu(\beta)$$

Temperature, T

 $V_{\rm m}(\alpha)dp - S_{\rm m}(\alpha)dT = V_{\rm m}(\beta)dp - S_{\rm m}(\beta)dT$

 $d\mu(\alpha) = d\mu(\beta)$

dG = Vdp - SdT $d\mu = V_{\rm m}dp - S_{\rm m}dT$

 $\mu(\alpha; p, T) = \mu(\beta; p, T)$

 $d\mu(\alpha) = d\mu(\beta)$.

Temperature, T

 $V_{\rm m}(\alpha) dp - S_{\rm m}(\alpha) dT = V_{\rm m}(\beta) dp - S_{\rm m}(\beta) dT$

 $d\mu(\alpha) = d\mu(\beta)$

 $\{S_{\rm m}(\beta) - S_{\rm m}(\alpha)\}dT = \{V_{\rm m}(\beta) - V_{\rm m}(\alpha)\}dp$

dG = Vdp - SdT $d\mu = V_{\rm m}dp - S_{\rm m}dT$

 $\mu(\alpha; p, T) = \mu(\beta; p, T)$

 $d\mu(\alpha) = d\mu(\beta)$.

Temperature, T

 $d\mu(\alpha) = d\mu(\beta)$ $V_{\rm m}(\alpha)dp - S_{\rm m}(\alpha)dT = V_{\rm m}(\beta)dp - S_{\rm m}(\beta)dT$ $\{S_{\rm m}(\beta) - S_{\rm m}(\alpha)\}dT = \{V_{\rm m}(\beta) - V_{\rm m}(\alpha)\}dp$ $\Delta_{\rm trs}SdT = \Delta_{\rm trs}Vdp$

dG = Vdp - SdT $d\mu = V_{\rm m}dp - S_{\rm m}dT$

 $\mu(\alpha;p,T)=\mu(\beta;p,T)$

 $d\mu(\alpha) = d\mu(\beta)$.

Clapeyron equation

Temperature, T

 $V_{\rm m}(\alpha)dp - S_{\rm m}(\alpha)dT = V_{\rm m}(\beta)dp - S_{\rm m}(\beta)dT$ $\{S_{\rm m}(\beta) - S_{\rm m}(\alpha)\}dT = \{V_{\rm m}(\beta) - V_{\rm m}(\alpha)\}dp$

 $d\mu(\alpha) = d\mu(\beta)$

$$\Delta_{\rm trs} {\rm Sd}T = \Delta_{\rm trs} {\rm Vd}p$$

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{trs}}S}{\Delta_{\mathrm{trs}}V}$$

dG = Vdp - SdT $d\mu = V_{\rm m}dp - S_{\rm m}dT$

 $\mu(\alpha; p, T) = \mu(\beta; p, T)$

 $d\mu(\alpha) = d\mu(\beta)$

Clapeyron equation

 $d\mu(\alpha) = d\mu(\beta)$ $V_{\rm m}(\alpha) dp - S_{\rm m}(\alpha) dT = V_{\rm m}(\beta) dp - S_{\rm m}(\beta) dT$ $\{S_m(\beta) - S_m(\alpha)\}dT = \{V_m(\beta) - V_m(\alpha)\}dp$ $\Delta_{\rm trs} S dT = \Delta_{\rm trs} V dp$ dp $\Delta_{\rm trs}S$

dG = Vdp - SdT $d\mu = V_{\rm m}dp - S_{\rm m}dT$

 $\mu(\alpha;p,T) = \mu(\beta;p,T)$

$$d\mu(\alpha) = d\mu(\beta)$$

 $d\mu(\alpha) = d\mu(\beta)$ $V_{\rm m}(\alpha) dp - S_{\rm m}(\alpha) dT = V_{\rm m}(\beta) dp - S_{\rm m}(\beta) dT$ $\{S_m(\beta) - S_m(\alpha)\}dT = \{V_m(\beta) - V_m(\alpha)\}dp$ $\Delta_{\rm trs} S dT = \Delta_{\rm trs} V dp$ dp $\Delta_{\rm trs}S$

Clapeyron equation

A relationship between p and T along the phase boundaries

Melting (fusion)

 $\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\rm fus}H}{T\Delta_{\rm fus}V}$

Slope of solid–liquid boundary

Melting (fusion)

 $\frac{\mathrm{d}p}{\mathrm{d}T}$

Slope of solid–liquid boundary

Temperature, T

 $\int_{p^*}^{p} \mathrm{d}p = \frac{\Delta_{\mathrm{fus}}H}{\Delta_{\mathrm{fus}}V} \int_{T^*}^{T} \frac{\mathrm{d}T}{T}$

 Δ_{fus} n

melting temperature is T* when the pressure is p^* melting temperature is T when the pressure is p

Melting (fusion)

Slope of solid–liquid boundary

Temperature, T

 $\int_{p^*}^{p} \mathrm{d}p = \frac{\Delta_{\mathrm{fus}}H}{\Delta_{\mathrm{fus}}V} \int_{T^*}^{T} \frac{\mathrm{d}T}{T}$

 $\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{fus}}H}{T\Delta_{\mathrm{fus}}V}$

 $p = p^* + \frac{\Delta_{\text{fus}}H}{\Delta_{\text{fus}}V} \ln \frac{T}{T^*}$

Melting (fusion)

 $\frac{\mathrm{d}p}{\mathrm{d}T}$

Slope of solid–liquid boundary

Temperature, T

 Δ_{fus} n

$$p = p^* + \frac{\Delta_{\rm fus} H}{\Delta_{\rm fus} V} \ln \frac{T}{T^*}$$

melting temperature is T* when the pressure is p^* melting temperature is T when the pressure is p

Melting (fusion)

Slope of solid–liquid boundary

 $\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\rm fus}H}{T\Delta_{\rm fus}V}$

 $p = p^* + \frac{\Delta_{\text{fus}}H}{\Delta_{\text{fus}}V} \ln \frac{T}{T^*}$

melting temperature is T* when the pressure is p* melting temperature is T when the pressure is p

Melting (fusion)

Slope of solid–liquid boundary

$$\int_{p^*}^{p} \mathrm{d}p = \frac{\Delta_{\mathrm{fus}}H}{\Delta_{\mathrm{fus}}V} \int_{T^*}^{T} \frac{\mathrm{d}T}{T}$$

$$p = p^* + \frac{\Delta_{\text{fus}}H}{\Delta_{\text{fus}}V} \ln \frac{T}{T^*}$$

melting temperature is T* when the pressure is p* melting temperature IS T when the pressure is p

Temperature, T

$$\ln \frac{T}{T^*} = \ln \left(1 + \frac{T - T^*}{T^*} \right)$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \dots$$

Taylor series expansion of ln(1 + x) around x = 0

Melting (fusion)

Slope of solid–liquid boundary

 $p = p^* + \frac{\Delta_{\text{fus}}H}{\Delta_c V} \ln \frac{T}{T^*}$

 $\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\rm fus}H}{T\Delta_{\rm fus}V}$

 $x << 1; \ln(1 + x) = x$

melting temperature is T* when the pressure is p* melting temperature IS T when the pressure is p

Melting (fusion)

Slope of solid–liquid boundary

 $p = p^* + \frac{\Delta_{\text{fus}}H}{\Delta_c V} \ln \frac{T}{T^*}$

 $\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{fus}}H}{T\Delta_{\mathrm{fus}}V}$

 $x << 1; \ln(1 + x) = x$

melting temperature is T* when the pressure is p* melting temperature IS T when the pressure is p

Melting (fusion)

Slope of solid–liquid boundary

 $\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\rm fus}H}{T\Delta_{\rm fus}V}$

melting temperature is T* when the pressure is p* melting temperature IS T when the pressure is p

Temperature, T

For the solid-liquid boundary

for the liquid-vapour boundary

for the liquid-vapour boundary

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{vap}}H}{T\Delta_{\mathrm{vap}}V}$$

 $\Delta_{\rm vap} V \approx V_{\rm m}({\rm g})$

for the liquid-vapour boundary

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{vap}}H}{T\Delta_{\mathrm{vap}}V}$$

 $\Delta_{\rm vap} V \approx V_{\rm m}(g) = RT/p.$

for the liquid-vapour boundary

 $\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{vap}}H}{T\Delta_{\mathrm{vap}}V}$ $\Delta_{\mathrm{vap}}V \approx V_{\mathrm{m}}(\mathrm{g}) = RT/p.$ $\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{vap}}H}{T(RT/p)}$

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{trs}}S}{\Delta_{\mathrm{trs}}V}$$

for the liquid-vapour boundary

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{vap}}H}{T\Delta_{\mathrm{vap}}V}$$
$$\Delta_{\mathrm{vap}}V \approx V_{\mathrm{m}}(g) = RT/p.$$
$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{vap}}H}{T(RT/p)} = \frac{p\Delta_{\mathrm{vap}}H}{RT^{2}}$$

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{trs}}S}{\Delta_{\mathrm{trs}}V}$$

for the liquid-vapour boundary

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{vap}}H}{T\Delta_{\mathrm{vap}}V}$$
$$\Delta_{\mathrm{vap}}V \approx V_{\mathrm{m}}(g) = RT/p.$$
$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{vap}}H}{T(RT/p)} = \frac{p\Delta_{\mathrm{vap}}H}{RT^{2}}$$

By using $dx/x = d\ln x$,

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{trs}}S}{\Delta_{\mathrm{trs}}V}$$

for the liquid-vapour boundary

$$\frac{dp}{dT} = \frac{\Delta_{vap}H}{T\Delta_{vap}V}$$
$$\Delta_{vap}V \approx V_{m}(g) = RT/p.$$
$$\frac{dp}{dT} = \frac{\Delta_{vap}H}{T(RT/p)} = \frac{p\Delta_{vap}H}{RT^{2}}$$

By using $dx/x = d\ln x$,

for the liquid–vapour boundary

 $\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{vap}}H}{T\Delta_{\mathrm{vap}}V}$ $\Delta_{\mathrm{vap}}V \approx V_{\mathrm{m}}(g) = RT/p.$ $\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{vap}}H}{T(RT/p)} = \frac{p\Delta_{\mathrm{vap}}H}{RT^{2}}$

By using $dx/x = d\ln x$,

If it is also assumed that the enthalpy of vaporization is independent of temperature,

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{trs}}S}{\Delta_{\mathrm{trs}}V}$$

for the liquid–vapour boundary

 $\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{vap}}H}{T\Delta_{\mathrm{vap}}V}$ $\Delta_{\mathrm{vap}}V \approx V_{\mathrm{m}}(g) = RT/p.$ $\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{vap}}H}{T(RT/p)} = \frac{p\Delta_{\mathrm{vap}}H}{RT^{2}}$

By using $dx/x = d\ln x$,

If it is also assumed that the enthalpy of vaporization is independent of temperature,

$$\int_{\ln p^*}^{\ln p} \mathrm{d}\ln p = \frac{\Delta_{\mathrm{vap}}H}{R} \int_{T^*}^T \frac{\mathrm{d}T}{T^2}$$

p* is the vapor pressure when the temperature is T* p the vapor pressure when the temperature is T

for the liquid–vapour boundary

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{vap}}H}{T\Delta_{\mathrm{vap}}V}$$
$$\Delta_{\mathrm{vap}}V \approx V_{\mathrm{m}}(g) = RT/p.$$
$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{vap}}H}{T(RT/p)} = \frac{p\Delta_{\mathrm{vap}}H}{RT^{2}}$$

By using $dx/x = d\ln x$,

If it is also assumed that the enthalpy of vaporization is independent of temperature,

$$\int_{\ln p^*}^{\ln p} \mathrm{d}\ln p = \frac{\Delta_{\mathrm{vap}}H}{R} \int_{T^*}^{T} \frac{\mathrm{d}T}{T^2}$$

$$\ln \frac{p}{p^*} = -\frac{\Delta_{\rm vap}H}{R} \left(\frac{1}{T} - \frac{1}{T^*}\right)$$

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{trs}}S}{\Delta_{\mathrm{trs}}V}$$

for the liquid–vapour boundary

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{vap}}H}{T\Delta_{\mathrm{vap}}V}$$
$$\Delta_{\mathrm{vap}}V \approx V_{\mathrm{m}}(g) = RT/p.$$
$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{vap}}H}{T(RT/p)} = \frac{p\Delta_{\mathrm{vap}}H}{RT^{2}}$$

By using $dx/x = d\ln x$,

If it is also assumed that the enthalpy of vaporization is independent of temperature,

$$\int_{\ln p^*}^{\ln p} \mathrm{d}\ln p = \frac{\Delta_{\mathrm{vap}}H}{R} \int_{T^*}^{T} \frac{\mathrm{d}T}{T^2}$$

$$\ln \frac{p}{p^*} = -\frac{\Delta_{\rm vap}H}{R} \left(\frac{1}{T} - \frac{1}{T^*}\right)$$

$$p = p^* e^{-\chi} \qquad \chi = \frac{\Delta_{vap} H}{R} \left(\frac{1}{T} - \frac{1}{T^*} \right)$$

for the liquid–vapour boundary

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{vap}}H}{T\Delta_{\mathrm{vap}}V}$$
$$\Delta_{\mathrm{vap}}V \approx V_{\mathrm{m}}(\mathrm{g}) = RT/p.$$
$$\mathrm{d}p \qquad \Delta_{\mathrm{vap}}H \qquad p\Delta$$

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta_{\mathrm{vap}}H}{T(RT/p)} = \frac{p\Delta_{\mathrm{vap}}H}{RT^2}$$

By using $dx/x = d\ln x$,

If it is also assumed that the enthalpy of vaporization is independent of temperature,

$$\int_{\ln p^*}^{\ln p} \mathrm{d}\ln p = \frac{\Delta_{\mathrm{vap}}H}{R} \int_{T^*}^{T} \frac{\mathrm{d}T}{T^2}$$

$$\ln \frac{p}{p^*} = -\frac{\Delta_{\rm vap}H}{R} \left(\frac{1}{T} - \frac{1}{T^*}\right)$$

$$p = p^* e^{-\chi} \qquad \chi = \frac{\Delta_{vap} H}{R} \left(\frac{1}{T} - \frac{1}{T^*} \right)$$

p* is the vapor pressure when the temperature is T*p the vapor pressure when the temperature is T

Solid-vapor boundary

Pressure, *p*

CHEM3520 - Spring 2023

Focus 1: Properties of gases

Focus 2: The First Law

- Focus 3: The Second and Third Laws
- Focus 4: Physical transformation of pure substances
- Focus 5: Simple mixtures

Focus 6: Chemical equilibrium

Focus 16: Molecules in motion

Focus 17: Chemical kinetics

Focus 18: Reaction dynamics

Focus 19: Processes at solid surfaces