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Phase diagram – CO2

• The phase diagram shows the regions of P and T at which phases 
are thermodynamically stable. A single phase is represented by a 
certain area.

• Phase boundaries (lines) are determined by the condition that the 
chemical potentials of the two phases are equal.

• Three phase boundaries meet at the triple point – three different 
phases of the substance are in equilibrium.

• The critical point marks the highest T and P at which the liquid and 
gas phases coexist.

• CO₂’s triple point marks the lowest P (and T) at which a liquid 
phase can exist. Below 5.11 atm, dry ice sublimates. 
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Phase diagram – CO2

• The point where your horizontal line intersects the L-V boundary 
represents the boiling point at that P

• The point where your horizontal line intersects the S-L boundary 
represents the melting (freezing) point at that P

• The point where your horizontal line intersects the S-V boundary 
represents the sublimation point at that P

• The melting point of CO₂ increases more significantly with pressure 
compared to the boiling point or sublimation point.

30 atm

M.P.                               B.P.
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Phase diagram – CO2

• The liquid-vapor (L-V) boundary represents the pressure of the 
vapor that is in equilibrium with the liquid at different 
temperatures.

• The solid-vapor (S-V) boundary represents the pressure of the 
vapor that is in equilibrium with the solid at different 
temperatures.

• The solid-liquid (S-L) boundary represents the equilibrium pressure 
at which a substance transitions between the solid and liquid 
phases at different temperatures

• Pressure represented along the solid-liquid (S-L) boundary is the 
external pressure applied to the system. Unlike the L-V or S-V 
boundaries, where vapor pressure plays a role, the S-L boundary 
does not involve a gas phase, so there's no vapor pressure.
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Different solid phases are indicated with Roman numerals I, II,…
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ice Ih

Hexagonal ice, denoted 
as Ice Ih, is the most 
common form of ice 
found on Earth.

It has a hexagonal closed 
packed (hcp) crystalline 
structure and is the 
stable phase of ice at 
atmospheric pressure 
and temperatures below 
0°C (273 K).
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Ice phases

Polymorphs - Different crystalline forms of the same compound
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H2O vs D2O

Lower ZPE in D₂O means hydrogen bonds are 
shorter and stronger, requiring more energy to 
break.



Helium 



Helium 







LAW - Superfluids climb up the walls of their container due to a phenomenon 
called the Rollin film effect.

Explain that briefly.



Focus 4: Physical transformation of pure substances 

Phase diagrams of pure substances

Thermodynamic aspects of phase transitions
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Temperature dependence of phase stability

The phase with the lowest chemical potential at a specified 
temperature is the most stable one at that temperature!
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Pressure dependence of phase stability



Pressure dependence of phase stability



LAW: The response of melting to applied pressure

Calculate the change in chemical potentials of ice and water when the pressure is 

increased from 1.00 bar to 2.00 bar at 0 °C. 

The mass density of ice is 0.917 g cm−3 and that of liquid water is 0.999 g cm−3 under 

these conditions.
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