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Phase boundaries (lines) are determined by the condition that the
chemical potentials of the two phases are equal.

Three phase boundaries meet at the triple point — three different
phases of the substance are in equilibrium.

The critical point marks the highest T and P at which the liquid and
gas phases coexist.

CO;,’s triple point marks the lowest P (and T) at which a liquid
phase can exist. Below 5.11 atm, dry ice sublimates.
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The liquid-vapor (L-V) boundary represents the pressure of the
vapor that is in equilibrium with the liquid at different
temperatures.

The solid-vapor (S-V) boundary represents the pressure of the
vapor that is in equilibrium with the solid at different
temperatures.

The solid-liquid (S-L) boundary represents the equilibrium pressure
at which a substance transitions between the solid and liquid
phases at different temperatures

Pressure represented along the solid-liquid (S-L) boundary is the
external pressure applied to the system. Unlike the L-V or S-V
boundaries, where vapor pressure plays a role, the S-L boundary
does not involve a gas phase, so there's no vapor pressure.
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Ice Ih

Hexagonal ice unit cell

Hexagonal ice, denoted
as Ice |h, is the most
common form of ice
found on Earth.

It has a hexagonal closed
packed (hcp) crystalline
structure and is the
stable phase of ice at
atmospheric pressure
and temperatures below
0°C (273 K).



Ice phases

COMMUNICATIONS

COMMENT
OPEN

The everlasting hunt for new ice
phases

Thomas C. Hansen(® '™

Water ice exists in hugely different environments, artificially or naturally
occurring ones across the universe. The phase diagram of crystalline phases of
ice is still under construction: a high-pressure phase, ice XIX, has just been
reported but its structure remains ambiguous.

Nature Communications 12, Article number: 3161 (2021) |




Ice phases
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Fig. 1 Schematic phase diagram of crystalline ice phases inspired by
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The Eduor does not hold himself responsible for opinions expressed by his correspondents.
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NoOTES 0N POINTS IN SOME OF THIS WEEK’S LETTERS APPEAR ON P. 83.

CORRESPONDENTS ARE INVITED TO ATTACH SIMILAR SUMMARIES TO THEIR COMMUNICATIONS,

Viscosity of Liquid Helium below the A-Point

THE abnormally high heat conductivity of helium
I1 below the Ai-point, as first observed by Keesom,
suggested to me the possibility of an explanation in
terms of conveetion currents. This explanation
would require helium IT to have an abnormally low
viscosity ; at present, the only viscosity measure-
ments on liquid helium have been made in Toronto!,
and showed that there is a drop in viscosity below
the A-point by a factor of 3 compared with liquid
helium at normal pressure, and by a factor of 8
compared with the value just above the A-point. In
these experiments, however, no check was made to
ensure that the motion was laminar, and not tur-
bulent.

The important fact that liquid helium has a
specific density g of about 0-15, not very different
from that of an ordinary fluid, while its viscosity p
is very small comparable to that of a gas, makes its

tube 3 could be set above or below the level (5) of
the liquid in the suwrrounding Dewar flask. The
amount of flow and the pressure were deduced from
the difference of the two levels, which was measured
by cathetometer.

The results of the measurements were rather
striking. When there were no distance pieces between
the disks, and the plates 1 and 2 were brought into
contact (by observation of optical fringes, their
separation was estimated to be about half a micron),
the flow of liquid above the A-point could be only
just detected over several minutes, while below the
A-point the liquid helium flowed quite easily, and
the level in the tube 3 settled down in a few seconds.
From the measurements we can conclude that the
viscosity of helium II is at least 1,500 times smaller
than that of helium I at normal pressure.

The experiments also showed that in the case of
helium II, the pressure drop across the gap was

mnararntiAanal a4 tha asisana AF tha sralaaidss AF Aavr



David M. Lee Douglas D. Osheroff Robérf C. Richardson

The Nobel Prize in Physics 1996 was awarded
jointly to David M. Lee, Douglas D. Osheroff and
Robert C. Richardson "for their discovery of
superfluidity in helium-3"



LAW - Superfluids climb up the walls of their container due to a phenomenon
called the Rollin film effect.

Explain that briefly.



Focus 4: Physical transformation of pure substances

Phase diagrams of pure substances

Thermodynamic aspects of phase transitions



Variation of chemical potential with T and P
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Variation of chemical potential with T and P

dG =—8dT at constant pressure;
dG = Vdp at constant temperature



Variation of chemical potential with T and P

dG =—8dT at constant pressure;
dG = Vdp at constant temperature
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Temperature dependence of phase stability
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Temperature dependence of phase stability
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Temperature dependence of phase stability
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Temperature dependence of phase stability

The standard molar entropy of liquid water at 100°C is
86.8J K 'mol™ and that of water vapour at the same tempera-
ture is 195.98J K mol ™. It follows that when the temperature
is raised by 1.0K the changes in chemical potential are
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Pressure dependence of phase stability
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LAW: The response of melting to applied pressure

Calculate the change in chemical potentials of ice and water when the pressure is

Increased from 1.00 bar to 2.00 bar at 0 °C.
The mass density of ice is 0.917 g cm~3 and that of liquid water is 0.999 g cm~ under

these conditions.
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