CHEM3520 - Spring 2023

Focus 1: Properties of gases

Focus 2: The First Law

Focus 3: The Second and Third Laws

Focus 4: Physical transformation of

pure substances

Focus 5: Simple mixtures

Focus 6: Chemical equilibrium

Focus 16: Molecules in motion

Focus 17: Chemical kinetics

Focus 18: Reaction dynamics

Focus 4: Physical transformation of pure substances

Phase diagrams of pure substances

Thermodynamic aspects of phase transitions

A phase is a form of matter that is uniform throughout in chemical composition and physical state

A phase is a form of matter that is uniform throughout in chemical composition and physical state

Number of phases (P)

A phase is a form of matter that is uniform throughout in chemical composition and physical state

Number of phases (P)

A solution of sodium chloride in water

A phase is a form of matter that is uniform throughout in chemical composition and physical state

Number of phases (P)

A solution of sodium chloride in water (P = 1)

A phase is a form of matter that is uniform throughout in chemical composition and physical state

Number of phases (P)

A solution of sodium chloride in water (P = 1)

Ice

A phase is a form of matter that is uniform throughout in chemical composition and physical state

A solution of sodium chloride in water
$$(P = 1)$$

Ice
$$(P = 1)$$

A phase is a form of matter that is uniform throughout in chemical composition and physical state

A solution of sodium chloride in water
$$(P = 1)$$

Ice
$$(P = 1)$$

A slurry of ice and water

A phase is a form of matter that is uniform throughout in chemical composition and physical state

A solution of sodium chloride in water (P = 1)

Ice (P = 1)

A slurry of ice and water (P = 2)

A phase is a form of matter that is uniform throughout in chemical composition and physical state

A solution of sodium chloride in water
$$(P = 1)$$

Ice
$$(P = 1)$$

A slurry of ice and water
$$(P = 2)$$

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

A phase is a form of matter that is uniform throughout in chemical composition and physical state

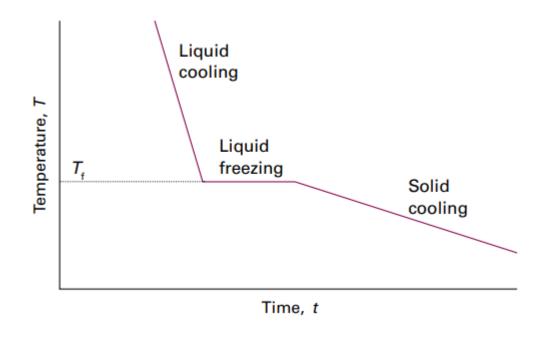
Number of phases (P)

A solution of sodium chloride in water
$$(P = 1)$$

Ice
$$(P = 1)$$

A slurry of ice and water
$$(P = 2)$$

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$
 (P = 3)


Phase transitions

Phase transitions

The conversion of one phase into another phase occurs at a characteristic transition temperature, T_{trs} , for a given pressure

Phase transitions

The conversion of one phase into another phase occurs at a characteristic transition temperature, T_{trs} , for a given pressure

Thermal analysis,

A pause in the temperature increase or decrease can indicate a phase transition during thermal analysis.

Spontaneous phase changes

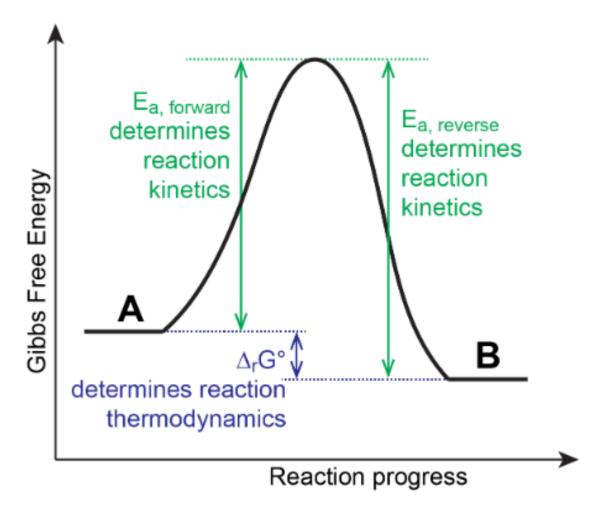
Spontaneous phase changes

$$A \rightleftharpoons B \Delta_r G^{\circ} < 0$$

For spontaneous phase changes, the system naturally shifts toward the phase with the lower Gibbs free energy at the given temperature and pressure.

Spontaneous phase changes

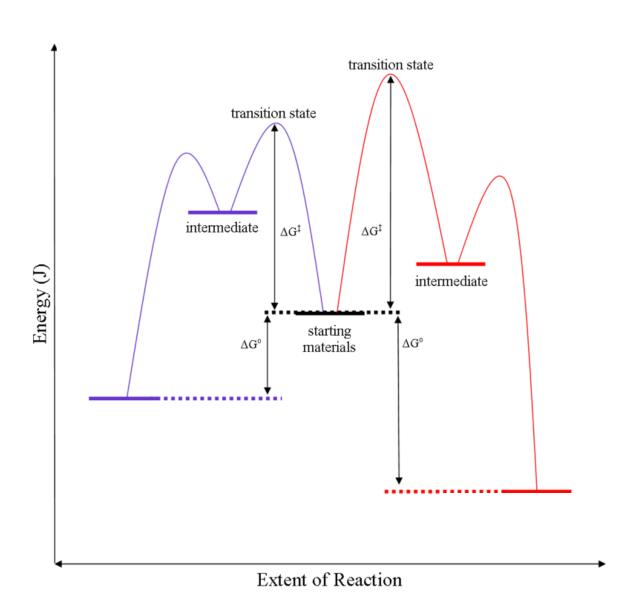
$$A \rightleftharpoons B \Delta_r G^{\circ} < 0$$


For spontaneous phase changes, the system naturally shifts toward the phase with the lower Gibbs free energy at the given temperature and pressure.

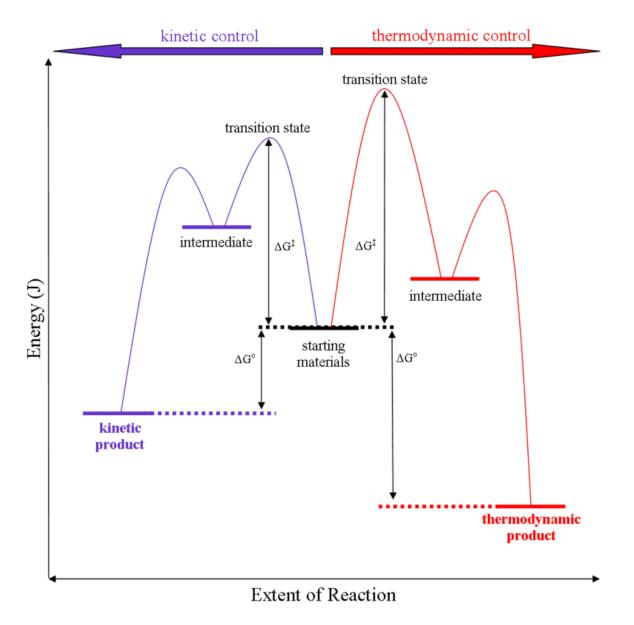
$$C_{(diamond)} \rightarrow C_{(graphite)}$$
 $\Delta G^{\circ} = -2.9 \text{ kJ/mol}$

Thermodynamics vs kinetics

$$A \rightleftharpoons B \Delta_r G^{\circ} < 0$$

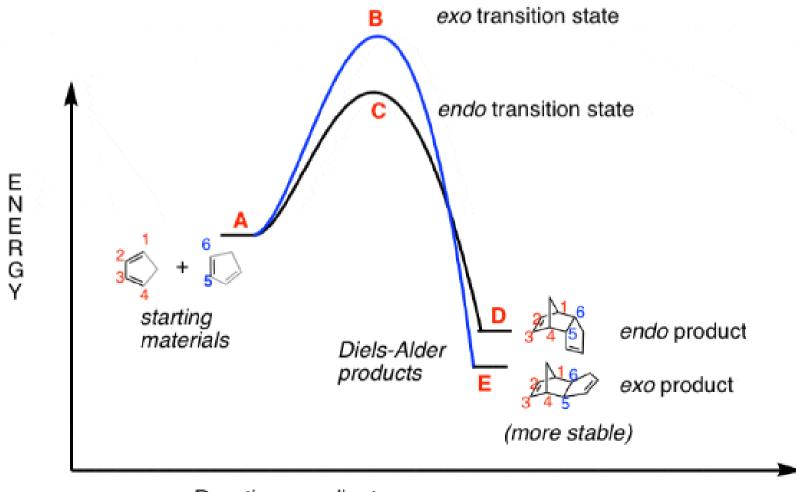

For spontaneous phase changes, the system naturally shifts toward the phase with the lower Gibbs free energy at the given temperature and pressure.

 $\mathrm{C}_{(\mathrm{diamond})} o \mathrm{C}_{(\mathrm{graphite})}$


 $\Delta G^{\circ} = -2.9 \text{ kJ/mol}$

Thermodynamic vs kinetic control

Thermodynamic vs kinetic control


Low temperature, short reaction time

High temperature, long reaction time

Diels-Alder Reaction

Diels-Alder Reaction

Reaction coordinate

The standard molar Gibbs energy of the formation of water vapor at 298K is -229 kJmol^{-1} , and that of liquid water at the same temperature is -237 kJmol^{-1} .

Thus, condensation is spontaneous at that condition!

The standard molar Gibbs energy of formation of water vapor at 298K is -229 kJmol⁻¹, and that of liquid water at the same temperature is -237 kJmol⁻¹.

Thus, condensation is spontaneous at that condition!

chemical potential, μ (mu)

The standard molar Gibbs energy of formation of water vapor at 298K is -229 kJmol⁻¹, and that of liquid water at the same temperature is -237 kJmol⁻¹.

Thus, condensation is spontaneous at that condition!

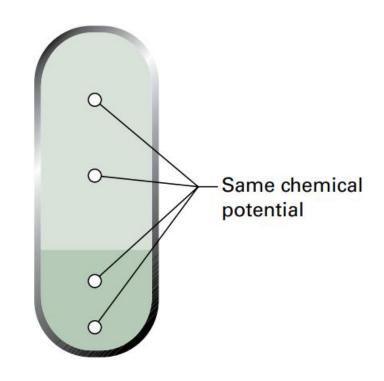
chemical potential,
$$\mu$$
 (mu) $\mu = G_{\rm m}$ 'molar Gibbs energy'

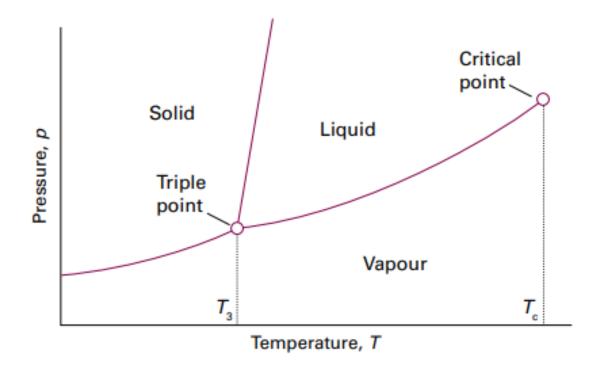
The standard molar Gibbs energy of formation of water vapor at 298K is -229 kJmol⁻¹, and that of liquid water at the same temperature is -237 kJmol⁻¹.

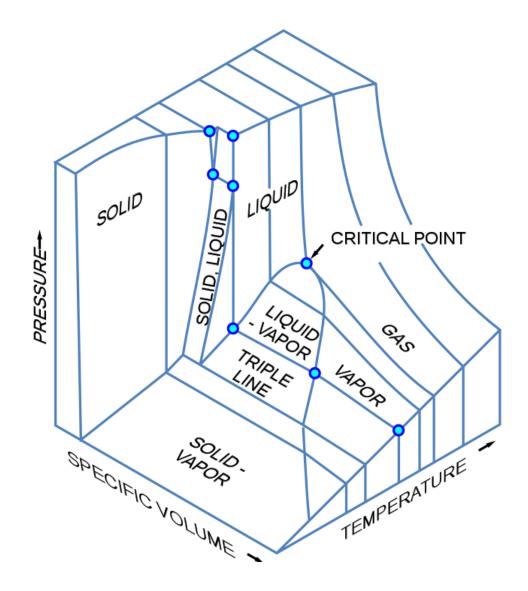
Thus, condensation is spontaneous at that condition!

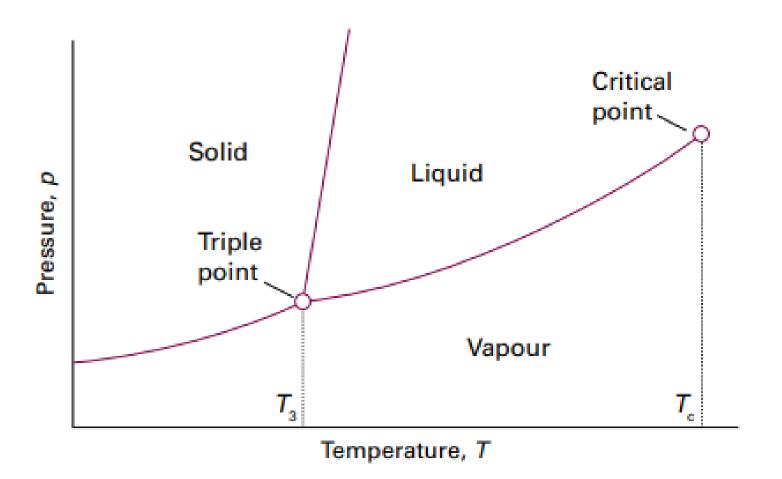
chemical potential,
$$\mu$$
 (mu) $\mu = G_{\rm m}$ 'molar Gibbs energy'

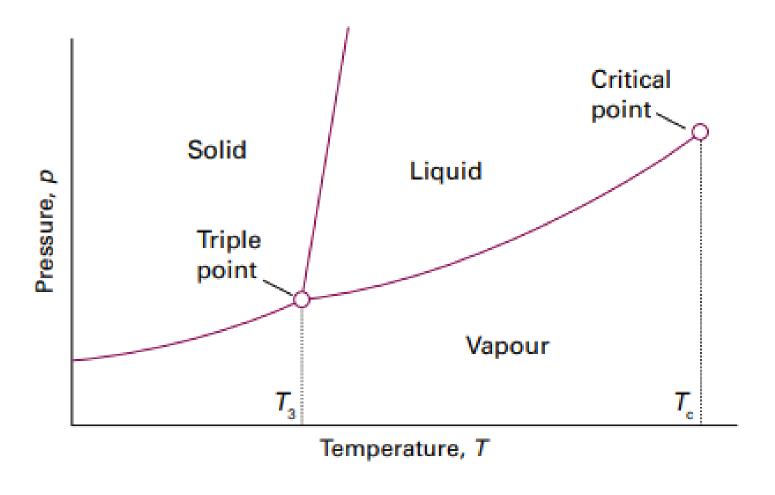
At equilibrium, the chemical potential of a substance is the same in and throughout every phase present in the system.


The standard molar Gibbs energy of formation of water vapor at 298K is -229 kJmol⁻¹, and that of liquid water at the same temperature is -237 kJmol⁻¹.

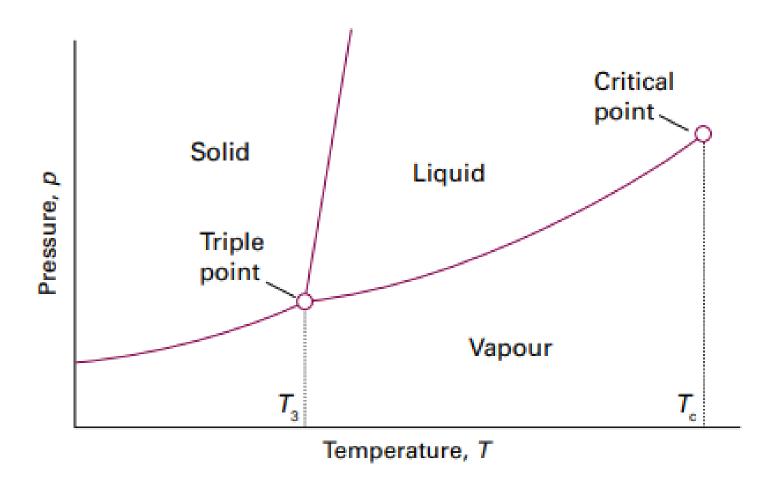

Thus, condensation is spontaneous at that condition!


chemical potential, μ (mu) $\mu = G_{\rm m}$ 'molar Gibbs energy'


At equilibrium, the chemical potential of a substance is the same in and throughout every phase present in the system.



(1.00 bar = 0.987 atm)

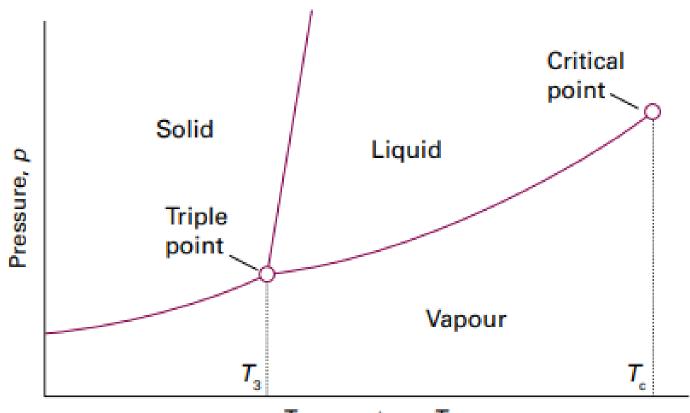


normal boiling point standard boiling point

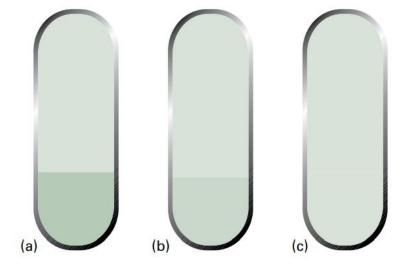
1 atm

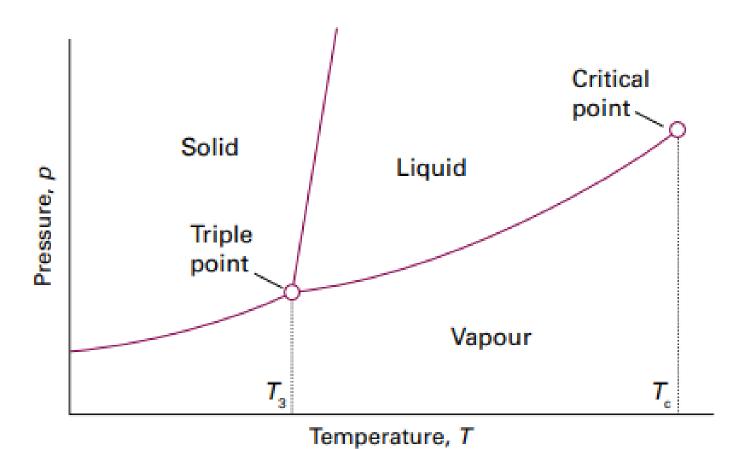
1 bar

The temperatures at which vapor pressure reaches 1 atm or 1 bar



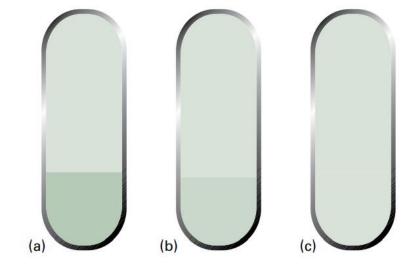
normal boiling point standard boiling point

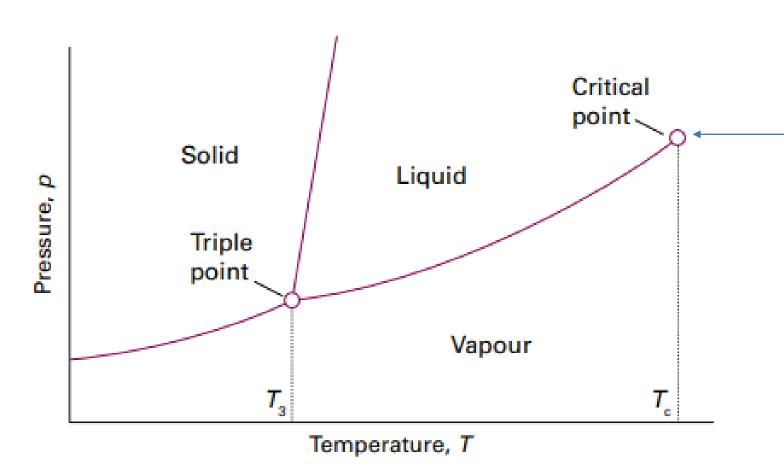

1 atm


1 bar

Normal boiling point of water is 100.0 °C Standard boiling point is 99.6 °C.

Temperature, T

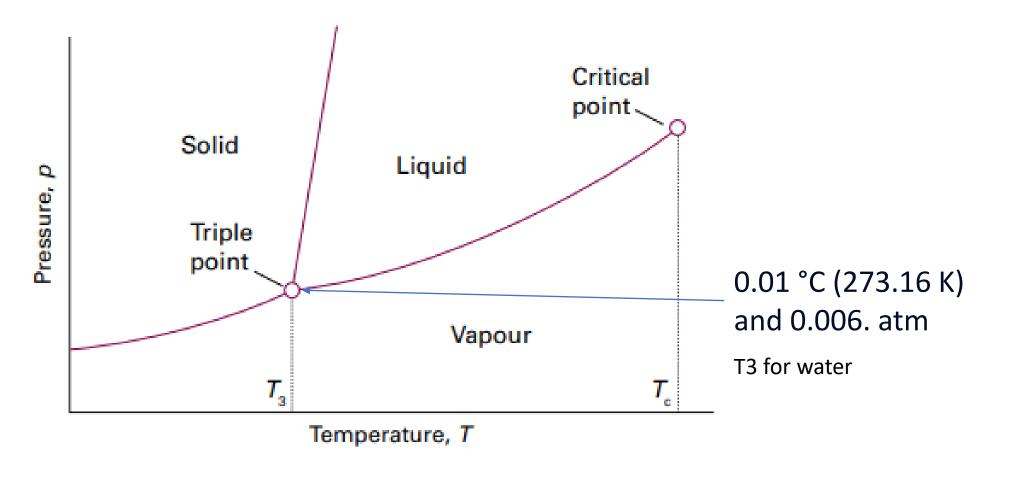




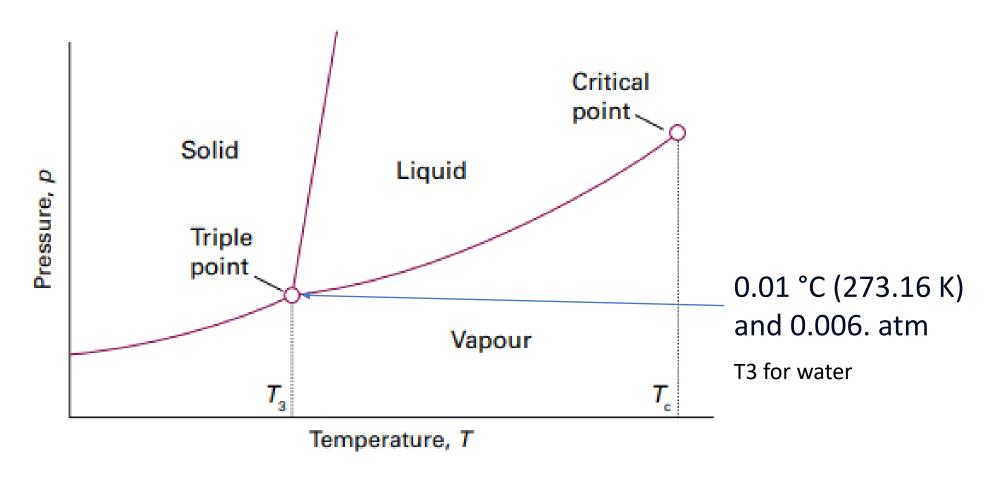
(a) (b) (c)

- •If the container is sealed and does not allow vapor to escape, the liquid will not boil in the traditional sense.
- •In a sealed container, as the temperature rises, the vapor pressure increases, but since the vapor cannot escape, the pressure inside also rises.
- •The liquid may transition into a supercritical fluid rather than boiling if the temperature exceeds the critical temperature (T_a), beyond which there is no distinct liquid and gas phase.

Phase diagram



374 °C and 218 atm

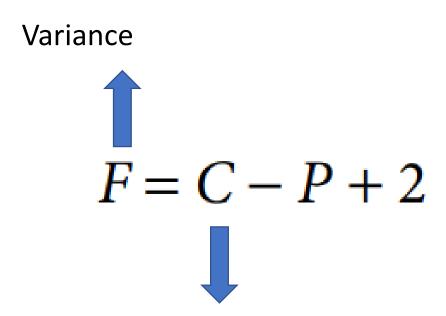

Tc for water

Phase diagram

Phase diagram

 A substance can have more than one triple point if it has multiple solid phases that can coexist with the liquid and gas phases under different conditions.

Gibbs Phase rule


$$F = C - P + 2$$

The **variance** (or *number of degrees of freedom*), *F*, of a system is the number of intensive variables that can be changed independently without disturbing the number of phases in equilibrium.

Variance

$$\mathbf{f} = C - P + 2$$

The **variance** (or *number of degrees of freedom*), *F*, of a system is the number of intensive variables that can be changed independently without disturbing the number of phases in equilibrium.

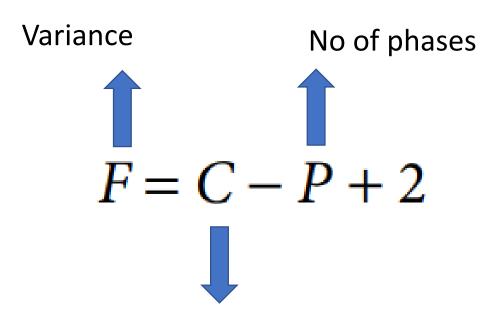
Number of components (chemically independent species in the system)

	Example	System	Number of Components (C)	Reason
1	Pure Water	H₂O (ice, liquid, vapor)	1	All phases consist of the same substance (H_2O) .

- C counts independent chemical species needed to describe all phases.
- If a species can be expressed as a combination of others (like CaO from CaCO₃), it does not count as an additional component.
- If two substances mix but do not react (like ethanol and water), they are separate components.

	Example	System	Number of Components (C)	Reason
1	Pure Water	H₂O (ice, liquid, vapor)	1	All phases consist of the same substance (H_2O) .
2	Saltwater	NaCl + H₂O	2	NaCl and H₂O are independent chemical species.

- C counts independent chemical species needed to describe all phases.
- If a species can be expressed as a combination of others (like CaO from CaCO₃), it does not count as an additional component.
- If two substances mix but do not react (like ethanol and water), they are separate components.


	Example	System	Number of Components (C)	Reason
1	Pure Water	H₂O (ice, liquid, vapor)	1	All phases consist of the same substance (H_2O) .
2	Saltwater	NaCl + H₂O	2	NaCl and H₂O are independent chemical species.
3	Calcium Carbonate Equilibrium	CaCO₃ ⇌ CaO + CO₂	1	CaO and CO ₂ come from CaCO ₃ , so only one independent species is needed.

- C counts independent chemical species needed to describe all phases.
- If a species can be expressed as a combination of others (like CaO from CaCO₃), it does not count as an additional component.
- If two substances mix but do not react (like ethanol and water), they are separate components.

	Example	System	Number of Components (C)	Reason
1	Pure Water	H₂O (ice, liquid, vapor)	1	All phases consist of the same substance (H_2O) .
2	Saltwater	NaCl + H₂O	2	NaCl and H₂O are independent chemical species.
3	Calcium Carbonate Equilibrium	CaCO₃ ⇌ CaO + CO₂	1	CaO and CO ₂ come from CaCO ₃ , so only one independent species is needed.
4	Water-Ethanol Mixture	H ₂ O + C ₂ H ₅ OH	2	$\ensuremath{\text{H}_2\text{O}}$ and ethanol mix but do not react, so both are independent.

- C counts independent chemical species needed to describe all phases.
- If a species can be expressed as a combination of others (like CaO from CaCO₃), it does not count as an additional component.
- If two substances mix but do not react (like ethanol and water), they are separate components.

The **variance** (or *number of degrees of freedom*), *F*, of a system is the number of intensive variables that can be changed independently without disturbing the number of phases in equilibrium.

Number of components (chemically independent species in the system)

Single-Phase System (e.g., Liquid Water)

- •C = 1 (Water)
- •P = 1 (Only liquid phase)
- •F = 1 1 + 2 = 2
- •This means both temperature and pressure can be varied independently.

Single-Phase System (e.g., Liquid Water)

- •C = 1 (Water)
- •P = 1 (Only liquid phase)
- •F = 1 1 + 2 = 2
- •This means both temperature and pressure can be varied independently.

Two-Phase System (e.g., Water Coexisting as Liquid and Vapor)

- •C = 1 (Water)
- •P = 2 (Liquid and Vapor)
- F = 1 2 + 2 = 1
- •Only one variable (temperature or pressure) can be independently changed, as the other will be fixed by the phase equilibrium.

Single-Phase System (e.g., Liquid Water)

•**C** = **1** (Water)

•P = 1 (Only liquid phase)

 $\bullet F = 1 - 1 + 2 = 2$

•This means both temperature and pressure can be varied independently.

Triple Point (Three Phases: Solid, Liquid, and Gas in Equilibrium)

•C = 1 (Water)

•P = 3 (Solid, Liquid, and Vapor)

 $\bullet F = 1 - 3 + 2 = 0$

•No degrees of freedom! This means the temperature and pressure are fixed at a single unique value (e.g., 0.01°C and 0.006 atm for water).

Two-Phase System (e.g., Water Coexisting as Liquid and Vapor)

•C = 1 (Water)

•P = 2 (Liquid and Vapor)

F = 1 - 2 + 2 = 1

•Only one variable (temperature or pressure) can be independently changed, as the other will be fixed by the phase equilibrium.

$$F = C - P + 2$$

Phase rule F = C - P + 2

P=1, C=1; F=2 => both p and T can be varied independently without changing the number of phases

bivariant

=> A single phase is represented by an area on a phase diagram

P=2, C=1; F=1 => Only 1 variable can be varied independently without changing the number of phases

Univariant

=> equilibrium of two phases is represented by a line

P=3, C=1; F=0 => no variable can be varied independently without changing the number of phases

invariant

=> equilibrium of three phases is therefore represented by a point