Focus 3: The Second and Third Laws
Entropy
Entropy changes in processes
Entropy measurement
Free energy

Combining 15t and 2"? [aws
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dq,., = TdS
1 )
dU = dq + dW a reversible change in a closed system
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This equation applies to any change in U—reversible or irreversible—of a closed system
that does no additional (non-expansion) work!
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An infinitesimal change in a function f(x,y)

df=gdx + hdy

where:

e g is the partial derivative of f with respectto z, i.e, g =

» h is the partial derivative of f with respectto y, i.e, h =
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An infinitesimal change in a function f(x,y) df: gdx T hdy

where:

e g is the partial derivative of f with respectto z, i.e, g = %

» h is the partial derivative of f with respectto y, i.e, h = %{E

For df to be an exact differential, meaning it represents the total derivative of some function

f(z,y), the mixed second partial derivatives must be equal:
().~ (&)
T dx y

This is a necessary and sufficient condition for the differential df to be exact, which is
fundamental in vector calculus, thermodynamics, and differential equations.
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Maxwell relations

An infinitesimal change in a function f(x,y) df: gdx T hdy
mathematical criterion for df being an exact differential (g‘g) = [ah]

y) \ox ,
dU=TdS-pdV  dH=TdS+ Vdp dA =—pdV —8dT dG = Vdp — §dT
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Use the Maxwell relations to show that the

entropy of a perfect gas is linearly dependent on In V; that is,
S=a+blnV.
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Use the Maxwell relations to show that the
entropy of a perfect gas is linearly dependent on In V; that is,
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pV = nRT,

Use the Maxwell relations to show that the
entropy of a perfect gas is linearly dependent on In V; that is,

S=a+blnV.
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Properties of the Gibbs energy
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Properties of the Gibbs energy

Gibbs energy, G

Gibbs energy, G

Pressure, p

Temperature, T



Variations of Gibbs energy with temperature

JdG/T H

= — Gibbs-Helmholtz equation

oT T2

* The equation relates Gibbs free energy to enthalpy (H) and temperature.

* |t shows how G/T varies with temperature, which is important in determining equilibrium constants
and spontaneity of reactions.
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Variations of Gibbs energy with temperature

dG/T H
a T =— Tj Gibbs-Helmholtz equation
P
when it is applied to changes,
OAG/T AH If the change in enthalpy is known,
oT - = T2 then how the change in Gibbs energy varies

with temperature is also known.



Variations of Gibbs energy with pressure

dG=Vdp - S8dT



Variations of Gibbs energy with pressure

dG=Vdp - S8dT

Gibbs energy change at constant T: dT=0



Variations of Gibbs energy with pressure

dG=Vdp - S8dT

Gibbs energy change at constant T: dT=0

G(p)=G(p)+] Vdp



Variations of Gibbs energy with pressure

dG=Vdp - S8dT

Gibbs energy change at constant T: dT=0

G(p)=G(p)+ | Vdp

P
G, (p:)=G,(p)+ L_ V.dp  For molar quantities,



Variations of Gibbs energy with pressure

dG=Vdp - S8dT

Gibbs energy change at constant T: dT = 0
Pr
G(p)=G(p)+] Vdp
Ps
G, (p:)=G,(p;)+ L_ V.dp  For molar quantities,

condensed phase

Go(p)=G(p)+V,, | "dp



Variations of Gibbs energy with pressure

dG=Vdp - S8dT

Gibbs energy change at constant T: dT=0

G(p)=G(p)+ | Vdp

Py
G, (p:)=G,(p;)+ L_ V.dp  For molar quantities,

condensed phase
Go(p)=G(p)+V,, | "dp

Molar Gibbs energy

Gm (pf ) = Gm(P1) + (pf _pi )Vm [incompressible

substance]



Variations of Gibbs energy with pressure

dG=Vdp - S8dT

Gibbs energy change at constant T: dT=0

G(p)=G(p)+ | Vdp

Py
G, (p:)=G,(p;)+ L_ V.dp  For molar quantities,

condensed phase
Go(p)=G(p)+V,, | "dp

Molar Gibbs energy

Gm (pf ) = Gm(P1) + (pf _pi )Vm [incompressible

substance]

For a perfect gas, at constant T:

G )=Go(p)+ | Viudp



Variations of Gibbs energy with pressure

dG=Vdp - S8dT

Gibbs energy change at constant T: dT=0

G(p)=G(p)+ | Vdp

Py
G, (p:)=G,(p;)+ L_ V.dp  For molar quantities,

condensed phase
Go(p)=G(p)+V,, | "dp

Molar Gibbs energy

Gm (pf ) = Gm(P1) + (pf _pi )Vm [incompressible

substance]

For a perfect gas, at constant T:

G )=Go(p)+ | Viudp

o
Gu(P)=G(p)+RT [ ' dp

V_=RTlp



Variations of Gibbs energy with pressure

dG=Vdp - S8dT

Gibbs energy change at constant T: dT=0

G(p)=G(p)+ | Vdp

Py
G, (p:)=G,(p;)+ L_ V.dp  For molar quantities,

condensed phase
Py
Go(p)=Go(p)+V, | "dp

Molar Gibbs energy

Gm (pf ) = Gm(P1) + (pf _pi )Vm [incompressible

substance]

For a perfect gas, at constant T:

G )=Go(p)+ | Viudp

o
Gu(P)=G(p)+RT [ ' dp

:Gm(pi)+RTln%

1

V_=RTlp



Variations of Gibbs energy with pressure

G(p)=G(p)+] Vdp



Variations of Gibbs energy with pressure

G(p)=G(p)+] Vdp

if p,=p° (the standard pressure of 1bar)

setp;=p



Variations of Gibbs energy with pressure

Pr
G(p)=G(p)+] Vdp
if p,=p° (the standard pressure of 1bar)
setp;=p

G.(p)=G°+ RTln%

Molar Gibbs energy
[perfect gas, constant T]

Molar Gibbs energy, G

p°

i_m Pressure, p



