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Calorimetric entropy measurement

The standard molar entropy of nitrogen gas at 25°C

Contribution to §5/(J K™ mol ™)

Integration, from 10K to 35.61 K 25.25
Phase transition at 35.61 K 6.43
Integration, from 35.61 K to 63.14K 23.38
Fusion at 63.14K 11.42 ,,.--::.73;:’:’777"
Integration, from 63.14K to 77.32K 11.41 » T ALHT,
- " /”’.’"—
Vaporization at 77.32K 72.13 /
Integration, from 77.32K to 298.15K  39.20 Solid Liguid Gas
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Calorimetric entropy measurement

The standard molar entropy of nitrogen gas at 25°C

Contribution to §5/(J K™ mol ™)

Debye extrapolation 1.92 D) Debye T3 law

Integration, from 10K to 35.61 K 25.25 ]
Assume that the heat capacity of a non-

Phase transition at 35.61K 643 metallic solid is proportional to T3
Integration, from 35.61 K to 63.14K 23.38
Fusion at 63.14K 11.42
Integration, from 63.14K to 77.32K 11.41
Vaporization at 77.32K 72.13

Integration, from 77.32K to 298.15K 39.20




Calorimetric entropy measurement

The standard molar entropy of nitrogen gas at 25°C

Contribution to §5/(J K™ mol ™)

Debye extrapolation 1.92 D) Debye T3 law

Integration, from 10K to 35.61 K 25.25 ]
Assume that the heat capacity of a non-

Phase transition at 35.61K 643 metallic solid is proportional to T3
Integration, from 35.61 K to 63.14K 23.38
Fusion at 63.14K 11.42
Integration, from 63.14K to 77.32K 11.41
Vaporization at 77.32K 72.13
Integration, from 77.32K to 298.15K 39.20
Correction for gas imperfection 0.92
Total 192.06

Therefore, S$_(298.15K) = S_(0) + 192.1JK mol™
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metallic solid at 4.2K is 0.43]JK 'mol™. What is its molar
entropy at that temperature?
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Calorimetric entropy measurement

The molar constant-pressure heat capacity of a certain non-
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Calorimetric entropy measurement

The molar constant-pressure heat capacity of a certain non-
metallic solid at 4.2K is 0.43]JK 'mol™. What is its molar
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Calorimetric entropy measurement

The molar constant-pressure heat capacity of a certain non-
metallic solid at 4.2K is 0.43]JK 'mol™. What is its molar

entropy at that temperature?

C (TI)=aT’
1

T, T
S(L,)=S(T)+ . CP} ) ar

S_(T)=S$ (0)+j “T” dT’ ;T=4.2

I
=
N

=S, (0)+ aIﬂTT’ 24T .

=S$,,(0)+4aT’ =S _(0)+4C, (T)

S (4.2K)=S_(0)+ 0.14J K" mol™
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Third Law

The entropy of a pure substance in a perfect crystalline state at zero
temperature is zero

T=0,"W=1 |S=klnW

|

There is only one way of arranging the molecules when
they are all in the ground state
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Structures of Cage, Prism, and Book Isomers of Water Hexamer from

Broadband Rotational Spectroscopy
Cristobal Pérez et al.

Science 336, 897 (2012);
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Fig. 4. The experimen-
tal rg-analysis structures
are shown for the three
water hexamer somers.
The dashed lines indicate
the hydrogen-bonding
network. The experimen-
tal 00 bond distances,
in Angstroms, are given
in bold with the theo-
retical values from the
vibrationally averaged
structures below. The de-
tachment energy for each
water molecule in the dus-
ter is given in red.
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Chemical Physics Letters 571 (2013) 1-15
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Chemical Physics Letters
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Frontiers Article

Broadband Fourier transform rotational spectroscopy for structure
determination: The water heptamer
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7-PR1 7-CAl 7-Book1
AEe 0.00 1.45 2.69
AEQ 0.00 0.91 1.67
AG50  0.00 0.87 1.47

7-TWI1 7-CY1
AEe 3:51 4.65
AEQ 2.38 3.10
AGS50 212 2.87

Figure 3. Several low-energy oxygen-atom frameworks of the water heptamer (energy differences in kcal/mol).
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Standard Third Law entropies

When the substance is in its standard
state at the temperature, T

S(T.)=S(T)+C jT* dT
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Standard Third Law entropies

When the substance is in its standard

state at the temperature, T

S(T,) = S(T)+cj

!

0JK1imol!?
(T. = 0K)

’ndT

Standard Third-Law entropies at 298 K

S2/(JK 'mol™)

Solids

Graphite, C(s)
Diamond, C(s)
Sucrose, C,H,,0,,(s)

Liquids
Benzene, C_H (1)
Water, H,0(1)

Gases

Methane, CH,(g)
Carbon dioxide, CO,(g)
Hydrogen, H,(g)
Helium, He(g)
Ammonia, NH,(g)

5.7
2.4
360.2

173.3
69.9

186.3
213.7
130.7
126.2
192.4
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AS = Z vSS — Z vS® All substances being in their standard states at

Products Reactants the specified temperature
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Standard reaction entropy
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Products Reactants the specified temperature

AS=DvS. ()
J

Question: Calculate the standard molar reaction entropy of the formation of water



Standard reaction entropy

,&rSE — Z "’SZ _ Z vSi All substances being in their standard states at

Products Reactants the specified temperature
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Question: Calculate the standard molar reaction entropy of the formation of water

H,(g) +1/2 O,(g) - H,0(l)



Standard reaction entropy

grs‘a — Z "’SZ _ Z V.’Si All substances being in their standard states at

Products Reactants the specified temperature

AS=DvS. ()
J

Question: Calculate the standard molar reaction entropy of the formation of water

AS° = S(H,0,1) - {S(H,.g) + £55(0,.9)} H,(g) + 1/2 O,(g) > H,0(l)
2 2 2



Standard reaction entropy

,&rSE — Z ]_,5:] _ Z V.’Si All substances being in their standard states at

Products Reactants the specified temperature

AS=DvS. ()
J

Question: Calculate the standard molar reaction entropy of the formation of water

AS° = S(H,0,1) - {S(H,.g) + £55(0,.9)} H,(g) + 1/2 O,(g) > H,0(l)
2 2 2

=69.9] K ' mol™ - {130.7 + 1(205.1)} JK ' mol™
=—-163.4] K" mol™



The entropy of ions in solution

o/ 1+ lons in solution
— at all temperatures!
5 (H ’aq) 0 [convention]
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— at all temperatures!
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Cu’*(aq) —-99.6 => disorder of the solution is decreased



The entropy of ions in solution

o/ 1+ lons in solution
— at all temperatures!
5 (H ’aq) 0 [convention]

$°/(J K 'mol")’

Cu+(aq) +40.6
Cu’*(aq) —-99.6 => disorder of the solution is decreased
Mg**(aq) —128

Cl'(aq) 57
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Temperature dependence of reaction entropy
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Temperature dependence of reaction entropy

AC,=dv,C,.()
1

|

,m(T) & . = T Arci
dT AS(T)=AS (T)+ [ —p"dT

T

T, C
Su(1) =8, (T,)+ [ "=



Temperature dependence of reaction entropy

A.C] is the difference of the molar heat capacities of
products and reactants under standard conditions weighted AC’ :ZV]C?m(I]
by the stoichiometric numbers that appear in the chemical :
equation:

AC;

,C (T o = T, A
§,(1,)=5,(1)+ |~ e ar AS(T)=AS (T)+ [ =5t dT




Temperature dependence of reaction entropy

A,C, is the difference of the molar heat capacities of
products and reactants under standard conditions weighted AC’ ZZV]C}?HI(I]
by the stoichiometric numbers that appear in the chemical :

equation:
I C m(T) = . = I Arcjj
S, (1,)=8,(T)+ | "~5—dT AS(T)=AS (T)+ [ —p"dT
If AGCe is independent of AIS‘B(TZ) — ArSS(Ti )+ Arciln%
temperature in therange T,to T, : 1



| . AC®
Calculation AS°(T,)=AS"(T,)+ j: w-dT

The standard reaction entropy for H,(g) + 5 O,(g) — H,0(g)
at 298K is —44.42JK'mol™, and the molar heat capac-
ities at constant pressure of the molecules are H,O(g):
33.58 JK 'mol™; H,(g): 28.84]J K" mol™; O,(g): 29.37J K" mol .



| . AC®
Calculation AS°(T,)=AS"(T,)+ j: w-dT

The standard reaction entropy for H,(g) + 5 O,(g) — H,0(g)
at 298K is —44.42JK'mol™, and the molar heat capac-

ities at constant pressure of the molecules are H,O(g):
33.58 JK 'mol™; H,(g): 28.84]J K" mol™; O,(g): 29.37J K" mol .

Arcf = Cim(HZO’g) B Cim(HZ’g) o %Cim(OZ’g)
=—-9.94] K" mol™



L

Calculation AS (T,)=AS(T)+ AC,In-

The standard reaction entropy for H,(g) + 5 O,(g) — H,0(g)
at 298K is —44.42JK'mol™, and the molar heat capac-

ities at constant pressure of the molecules are H,O(g):
33.58 JK 'mol™; H,(g): 28.84]J K" mol™; O,(g): 29.37J K" mol .

Arcf = Cim(HZO’g) B Cim(HZ’g) o %Cim(OZ’g)
=—-9.94] K" mol™

373K
298K

AS°(373K) =—44.42]K 'mol™ + (-9.94] K 'mol™) x In
= —46.65] K" mol™
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