Focus 3: The Second and Third Laws

Entropy
Entropy changes in processes

Entropy measurement
Gibbs free energy

Combining 1t and 2"9 [aw



Thermodynamic definition of S
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T extensive property.

Calculate the entropy change of a sample of perfect gas when it expands isothermally from a volume V, to
a volume V;
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The total change in entropy, depends on how the expansion takes place

Reversible isothermal expansion
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Free isothermal expansion

Even if the gas expands into a larger volume within an
isolated container, the external surroundings do not
experience a change in the thermodynamic state.



Expansion

The total change in entropy, depends on how the expansion takes place

Reversible isothermal expansion Free isothermal expansion
_ Vf
qrev = ”RTIH(L?/K) qsur = _HRTIH(V}/V:) ﬁS :”Rlnvj
V.
AS :_qrcv — f . .
sur T nR ln V'l qsur — 0 ASSur — 0
| | \ Y
Vf
Asmt —_ 0: ﬂStm —?‘IRh‘lvi

Irreversible process!



Phase transitions

Pressure

Temperature



Phase transitions

*\When a system undergoes a phase change at the transition temperature, any heat
transfer (q) is reversible.

*This is because adding heat causes some of the substance to transition into the next
phase (e.g., from solid to liquid) without changing temperature.

eRemoving heat reverses the process, causing some of the substance to transition back
to the previous phase.
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At the transition temperature, any transfer of energy as heat between the system and

its surroundings is reversible because the two phases in the system are in equilibrium
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Phase transitions

At the transition temperature, any transfer of energy as heat between the system and

its surroundings is reversible because the two phases in the system are in equilibrium

A H
q — A[I‘SH3 ‘&trss =——

Transition temperature

Entropies
Fusion (at T)) Vaporization (at T,)
Argon, Ar 14.17 (at 83.8K) 74.53 (at 87.3K)
Benzene, C.H, 38.00 (at 279K) 87.19 (at 353K)
Water, H,0 22.00 (at 273.15K) 109.0 (at 373.15K)
Helium, He 4.8 (at 8K and 30bar) 19.9 (at 4.22K)
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Phase transitions

At the transition temperature, any transfer of energy as heat between the system and
its surroundings is reversible because the two phases in the system are in equilibrium

A H
q — A[I‘SH3 ‘&trss =——

Transition temperature

Entropies
Fusion (at T)) Vaporization (at T,)
Argon, Ar 14.17 (at 83.8K) 74.53 (at 87.3K)
Benzene, C.H, 38.00 (at 279K) 87.19 (at 353K)
Water, H,0 22.00 (at 273.15K) 109.0 (at 373.15K)
Helium, He 4.8 (at 8K and 30bar) 19.9 (at 4.22K)

A H /(] mol ™) 6,/°C (Aﬁg ! o)
Benzene 30.8 80.1 87.2
Carbon tetrachloride 30 76.7 85.8
Cyclohexane 30.1 80.7 85.1
Hydrogen sulfide 18.7 —-60.4 87.9
Methane 8.18 -161.5 73.2
Water 40.7 100.0 109.1
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Trouton's rule

The entropy of vaporization is almost the same value (about 85-88 kJ/mol), for various
kinds of liquids at their boiling points

Because a similar change in volume occurs when any liquid evaporates and becomes a
gas.

Question: Estimate the standard molar enthalpy of vaporization of bromine given
that it boils at 59.2 °C?

A,,H® =T, x (85]K mol™)

A,,H ®=(332.4K) x (85J K" mol™) The experimental value is +29.45k] mol .
=+2.8 x 10*Jmol™ =+28kJmol™
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Heating

dg,., _rfdq,.,
dS=—p AS=| =
I d
S(T)=S(T) + | ==
dqrev =dH. At constant pressure

dH = C dT.
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Heating

_dqrev _ qurev
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T d
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dqrev = dH |
i dqrev = deT

dH = CdT.

CdT

S(T.)=S(T)+C ij dT
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For different Cp/R values
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Example S(T,)=S(T)+ cpjn 7 =S(I)+C,In7

The molar constant-volume heat capacity ot water at 298K is
75.3J K" mol ™. The change in molar entropy when it is heated

from 20°C (293 K) to 50°C (323 K), supposing the heat capac-
ity to be constant in that range,

What is AS?
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The molar constant-volume heat capacity ot water at 298K is
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Example S(T.)=S(T)+ cpjn o =S()+C,Int

The molar constant-volume heat capacity ot water at 298K is
75.3J K" mol ™. The change in molar entropy when it is heated

from 20°C (293 K) to 50°C (323 K), supposing the heat capac-
ity to be constant in that range, is therefore

323K
293K

AS_=3S_(323K)—S_(293K)=(75.3]JK " mol " )xln

=+7.34]K "' mol™
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~ (1.00x10° Pa)x(0.500x10~° m")
~ (8.3145]K ' mol )% 298K

Combined processes

Calculate the entropy change when argon at 25°C and
1.00bar in a container of volume 0.500dm’ is allowed to
expand to 1.000dm’ and is simultaneously heated to 100 °C.
(Take the molar heat capacity at constant volume to be 3R.)

- V. ' S oy 1.000dm’
AS(Step1)=nRIn v =0.0201.. .m01?<(8.3145]K mol )In 0500dm
Tf
AS(Step 2)=nC,,,, lnT
E 373K

=2nRln
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