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Abstract6

Energy supplies are moving away from environmentally damaging, finite, and expensive fos-7

sil fuels to renewable energy resources through technological innovations. Wind energy is8

one of the most advanced renewable energy resources due to the extensive research that9

has been ongoing over the last decades to optimize aerodynamic performance of wind tur-10

bines, structural design of wind turbines, control strategies, site selection, and the layout of11

wind farms. This chapter outlines fundamental elements of wind farm layout optimization12

including optimization parameters, objective functions, wake loss models, and search meth-13

ods. Optimization parameters include base location, number, rotor diameter, hub height,14

rotational direction, and yaw angle of wind turbines, as well as shape of wind farm area. In15

the wake loss models section, all existing wake loss models including large eddy simulation,16

non-linear and linearized Reynolds-averaged Navier-Stokes models, stochastic models, kine-17

matic models, and empirical models are discussed. In addition, different search methods,18

from simple greedy search algorithms to advanced genetic algorithms, are briefly reviewed19

and compared.20
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1 Introduction21

The operational performance of a wind turbine sited in a wind farm - of any scale; either22

a small onshore community-sized wind farm or a commercial-sized offshore wind farm - is23

negatively affected by the wake of other wind turbines. Hence, under similar wind condi-24

tions, the annual energy production (AEP) of a wind turbine sited in a wind farm is always25

significantly less than that of an identical single isolated wind turbine. To put this into26

perspective, the relative power production of a turbine located in the second row of the Nor-27

rekaer wind farm, an onshore wind farm in Denmark, is approximately 40-50% of a single28

isolated turbine under similar free-stream conditions when wind blows along the column of29

the turbines. Wind farm layout optimization, in its classic definition, is known as optimiz-30

ing the position of wind turbines in order to minimize the above-described negative wake31

effect. In more advanced and inclusive analyses, however, several other characteristics of the32

wind farm, including, number of turbines [1, 2], rotor diameter (i.e. turbine type) [3, 4],33

hub height [5, 6, 7, 8, 3, 9, 10], rotational direction [11], and length of power transmission34

lines [12, 13, 14, 15, 16, 17, 18, 19, 20] are determined simultaneously with the position35

of wind turbines in order to optimize the annual energy production of the wind farm, the36

environmental impacts, and the economic benefits.37

The process of optimizing the layout of a wind farm consists of two major steps (Fig. 1).38

First, a search algorithm is required to identify all possible layouts over the given wind farm39

area. Second, a wake-loss model is required to predict the power production of the layout40

identified in the first step. Depending on the way through which the interaction between41

these two steps are defined, optimization techniques can be classified as one-way or two-way42

algorithms.43

In optimization algorithms with the one-way structure, the search process is independent44

of the power prediction step. The search algorithm identifies a layout, and then, the power45
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Figure 1: Wind farm layout optimization algorithm with (a) a one-way structure and (b) a
two-way structure.

production of the identified layout is predicted and stored by the power prediction module46

of the optimization algorithm (Fig. 1(a)). Once the search is completed, the layout with the47

maximum power (or maximum AEP) is selected as the optimal layout. One example of a48

one-way optimization structure is the algorithm developed by Ghaisas and Archer [21]. They49

described a wind farm layout using four independent design parameters defined as the spac-50

ing between consecutive turbines in the X-direction (SX), the spacing between consecutive51

turbines in the Y-direction (SY), the staggering of alternate rows in the Y-direction (SDY),52

and the angle between rows and columns (β). Then, hundreds of layouts are identified by53

assigning ranges of values to those discrete design parameters (i.e., SX, SY, SDY, and β) and54

power production of each layout is predicted using Geometric Models. Finally, the layout55

with highest power production is chosen as the optimal layout. During this exhaustive search56

for identifying possible layouts no information is communicated between the search and the57

power prediction modules and all of the layouts are identified upfront.58

In optimization algorithms with a two-way structure, however, the search algorithm con-59
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stantly communicates with the power prediction module and modifies the search process60

accordingly (Fig. 1(b)). Hence, the two-way optimization algorithms are more sophisti-61

cated; however, they are smarter and are able to identify more efficient optimal layouts in a62

shorter period of time. For instance, in the optimization algorithm developed by Vasel-Be-63

Hagh and Archer [5], first, a turbine-placement grid with Ng grid points is mapped onto the64

wind farm area, and the optimization algorithm is initialized by placing one turbine at one of65

the grid points. Then, the second turbine is placed at all (Ng− 1) available locations one by66

one to determine the base location for which AEP of the two placed turbines is maximized.67

This procedure continues until n reaches NT , where NT is the total number of turbines.68

This dynamic programming approach identifies the optimal layout by adding one turbine at69

a time according to the information that is being communicated between the search and the70

power prediction modules.71

In this chapter, first all optimization variables and objective functions that need to be72

taken into account to develop an efficient design for a community-sized wind farm are dis-73

cussed (§2). Then, different kinds of wake-loss models that have been introduced in literature74

in order to predict power production of a given wind farm are presented (§3). Finally, avail-75

able search algorithms that have been developed for wind farm layout optimization purposes76

are presented and discussed (§4).77

2 Objective functions and optimization variables78

Wind farm layout optimization includes identifying not only the optimal positions for the79

turbines to maximize the power or the annual energy production of the wind farm, but also80

the optimal hub height, the optimal number of turbines, the optimal rotational direction,81

and the optimal rotor diameter (i.e., turbine type) to minimize the levelized cost of energy,82

to minimize the adverse environmental impacts such as noise production, and to minimize83
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Table 1: Objective functions considered for wind farm design and developement.
Objective functions Objective Literature
Annual Energy Production (AEP) Maximizing [22? , 18, 35? , 84? ]
Power Production (PP) Maximizing [6, 23, 13, 24, 25, 26, 27, 28]
Levelized Cost of Energy (LCOE) Minimizing [2, 29, 23, 30, 31, 32, 33, 34, 35]

[36, 12, 37, 38, 39, 40, 41, 42, 43]
Net Present Value (NPV) Maximizing [44? ? ? ]
Noise Propagation (NP) Minimizing [2, 1, 45, 46, 47]
Loads Acting on Wind Turbines (WTL) Minimizing [24, 23, 48]

the fatigue loads acting on the wind turbines. In this section, all of these objective functions84

and optimization variables are introduced and discussed in details.85

2.1 Objective functions86

A list of the most essential objective functions that are required to be optimized in order to87

develop an efficient design for a commercial-sized wind farm is presented in Table 1. Among88

all, the annual energy production of the wind farm is the most critical objective function in89

a wind farm layout optimization analysis. The annual energy production of a wind farm is90

calculated as,91

AEP =
360∑
i=1

[fri × (

n1∑
j=1

[pw(uj)Pc(uj)
nt∑
k=1

[Prel(k,i)]]+

n2∑
j=n1

[pw(uj)PratedNT ])× nh]
(1)

where fri is the relative frequency of wind in direction i, pw(uj) is the probability of having92

wind at speed of uj = (0.5 + j)du in direction i and is calculated via Weibull distribution93 (
Eq. (2)

)
, du is the wind speed resolution, Pc(uj) is the power obtained from the power94

curve of wind turbine at wind speed of uj, Prated is the rated power of wind turbines, n1 and95

n2 are respectively defined as n1 = 1 + urated/du and n2 = ucut−out/du, Prel is the relative96

power calculated via a wake-loss model, and nh = 8760 denotes number of hours per year.97

The Weibull distribution, used in Eq. (1) to represent the wind velocity probability density98

6



ranging from the cut-in to the cut-out wind speeds, is defined as,99

Pw(u)du = (
kw
cw

)(
u

cw
)kw−1exp[−(

u

cw
)kw ]du, (2)

in which Pw, u, kw and cw are probability density, wind speed, shape factor, and scale factor100

respectively.101

In many of the wind farm optimization studies, the farm-averaged power production102

of the wind farm, defined as the total power production of the farm divided by the total103

number of turbines, is simply used as the objective function of the optimization analysis.104

It is important to note that a wind farm optimized by maximizing its power production is105

not necessarily identical to the optimal layout which is obtained based on maximizing the106

annual energy production, and as the annual energy production is what really matters as107

the total output of a wind farm, it is recommended to use the annual energy production as108

the main objective function of the wind farm layout optimization analysis.109

Another popular objective of wind farm layout optimization algorithms is minimizing the110

Levelized Cost of Energy (LCOE) [$/kWh]. In general, the levelized cost of energy is defined111

as the average total cost to build and operate a wind farm over its lifetime divided by the112

total energy output of the wind farm over that period of time. Accordingly, the levelized113

cost of energy is calculated as,114

LCOE =
CInv
aEa

+
CO&M

Ea
(3)

where CInv = CRNA + CSS + CElect + CDecom is the capital cost in which CRNA is the115

Rotor-Nacelle Assemblies costs, CSS includes the the support and the structure costs, CElct116

denotes the electrical interconnection costs, CDecom is the decommissioning cost, CO&M is117
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the operational and maintenance costs, and a is the annuity factor defined as118

a = (1− (1/(1 + r))T )/r (4)

where T is the lifetime of the wind farm in years and r is the interest rate in [%] and is119

defined as the summation of discount rate and inflation rate. In Eq. (3), Ea is the net120

effective expected electrical energy of the wind farm and is defined as,121

Ea = [

NT∑
i=1

(EWT,i − EWL,i − ECL,i)− ELT ] (5)

where EWT,i is the maximum possible energy production of turbine i assuming that turbine122

i is a front-row turbine, EWL,i is the energy that turbine i loses due to wake effects, ECL,i123

stands for the energy that turbine i loses through the collection cables, and ELT is the energy124

loss through the transmission cables.125

If the interest rate is low, then it is more efficient to use the Net Present Value (NPV)126

instead of the Levelized Cost of Energy (LCE) as the objective function for a wind farm127

layout optimization. The NPV is defined to take into account the fact that a given amount128

of money is more valuable now than it will be in the future as it can be used now to make129

more money in the future. The NPV is defined as,130

NPV =
P1

(1 + r)1
+

P2

(1 + r)2
+ ...+

Pn
(1 + r)n

(6)

in which r is the rate of interest and must be given as a decimal (not percent) and Pi stands131

for the yearly payment of the ith year.132

The noise created by a community wind farm, which is located near residential areas, may133

be annoying to people living nearby, hence, the layout of those wind farms must be developed134

so that the noise level of the farm is minimized. Noise created by wind farms has two different135

sources; first, the aerodynamic noise produced by the blades of turbines cutting through the136
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air on their downward motion, and second, noise made by the gearbox system. Employing137

thiner blades and shifting to direct drive (i.e., gear-less) wind turbine technologies are efficient138

approaches to reduce noise of wind turbines at the manufacturing stage. At the wind farm139

design and development stage, however, the total noise production of a wind farm can be140

reduced by smart placement of wind turbines. In community wind projects, turbines are141

normally placed in the wind farm based on a trade-off between maximizing the annual energy142

production of the wind farm and minimizing its noise propagation. The noise calculations143

are usually conducted based on the International Standard ISO 9613 which includes a general144

method of calculation for attenuation of sound during propagation outdoors. Accordingly,145

sound pressure level of each wind turbine at each receptor location is calculated as146

Lp = Lw +Dc − Af (7)

where Lw = 100 db [1] is sound power level, Dc stands for directivity correction in dB if147

the source does not emit sound equally in all directions, Af is the octave-band attenuation148

defined as149

Af = Adiv + Aatm + Agr + Abar + Amisc (8)

in which Adiv is the attenuation due to geometrical spreading, Aatm is the attenuation due to150

air absorption, Agr is the attenuation due to ground absorption and reflection, Abar is the free151

field diffraction attenuation of a barrier, and Amisc is the attenuation due to miscellaneous152

effects such as weather variability and dispersion through complex acoustical structures.153

International Energy Agency (IEA) has provided the following approximation for Eq. (7),154

Lp(dir) = Lw − 10× log(2Πd2
ir)− αdir (9)

where the indices i and r represent turbine and receptor, d is the distance between turbine155
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and receptor, and α = 0.005 db/m is a constant. Individual sound pressure levels calculated156

via Eq. (9) are then summed up using the following equation,157

Lp,avg = 10× log
( ns∑
i=1

( 8∑
j=1

100.1(Lp(i,j)+Af (i,j))
))
, (10)

in which ns is number of sound sources (i.e., number of turbines), Lp(i, j) is the individual158

sound pressure level associated with turbine i and octave band j.159

Finally, minimizing the fatigue loads acting on the structure of wind turbines can be160

considered as another objective function for wind farm layout optimization analyses as the161

damage equivalent loads in a wind farm are highly affected by partial wake overlap and162

can be significantly decreased by smart placement of turbines and smart handeling of yaw-163

misalignment [24, 23, 48].164

2.2 Optimization variables165

If changing the value of a parameter simultaneously exerts a positive and a negative effect on166

the objective function of a problem, then that parameter can be considered as an optimization167

variable and there might be an optimal value for it. The most popular optimization variables168

for wind farm layout optimization analyses is presented in Table 2.169

For instance, by lowering the the hub height of the downstream wind turbine by a spe-170

cific length equal to k × d, where k is the decay coefficient (k=0.04 and 0.078 for offshore171

and onshore wind farms respectively) and d is the axial distance between the turbines, the172

downstream wind turbine starts to become unexposed to the upstream wake (see Fig. 2).173

This positively affects the power production of the downstream wind turbine. On the other174

hand, due to the shear effect, lowering the hub height of the downstream wind turbine causes175

a reduction in the speed of the wind experienced by this wind turbine, which negatively af-176

fects its power production. Due to this simultaneous positive and negative effects that are177
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Table 2: Optimization variables considered for wind farm design and development.
Optimization variables Studies
Turbine positions [49, 50, 29, 18, 51, 12, 52, 53, 54? ]
Number of turbines [13, 55, 42, 1, 56]
Rotor diameter [3, 4]
Hub height [6, 57, 5, 8, 4]
Electrical Cable Length [12, 13? , 15, 16, 17, 18? , 20]
Rotational direction [11]
Wind farm area [58, 37, 59, 46, 60]

brought about by variation of the hub height of the downwind turbine, the “hub height" can178

be considered as an optimization variable, and in fact, in many cases, a compromise between179

the two negative and positive effects can be reached so that the maximum power production180

of the downstream wind turbine can be achieved at a height lower than the hub height of the181

upstream wind turbine. Building the downstream wind turbine at this optimal hub height182

not only increases the power production, but also slightly decreases the average height of183

the wind farm leading to a reduction of the capital and the maintenance costs [5].184

Figure 2: Two in-line wind turbines aligned with the wind direction. The upstream turbine
is placed at Hmax while the hub height of the downstream turbine may vary from Hmax to
Hmin [5].
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Table 3: The most popular wake loss models used in wind energy applications.
Wake loss models
Large Eddy Simulations (LES):

- LES with actuator lines
- LES with actuator disks

Non-Linear Reynolds-Averaged
Navier-Stokes (RANS) Models:

- K-ε with actuator lines/disks
- K-ω with actuator lines/disks

Stochastic Models
Linearized RANS Models:

- Ainslie
- Fuga

Kinematic (Analytical) Models:
- PARK (Jensen)
- Bastankhah / Porte Agel (BPA)
- Xie / Archer
- Geometric Model
- Frandsen
- Larsen

Experimental Models: - Ishihara

3 Wake-loss models185

A list of the most popular wake loss models used for wind farm design and development186

purposes is provided in Table 3. These models are described in detail in the following187

sections.188

3.1 Large eddy simulations (LES)189

3.1.1 Governing equations190

Large eddy simulations govern dynamics of large eddies by removing those with scales smaller191

than a filter width from the unsteady Navier-Stokes equations and modeling their effects192

using a subgrid scale model. The filter width is defined as ∆ = 3
√

∆x∆y∆z where ∆x,193

∆y, and ∆z are cell sizes in the x, y and z directions respectively. The incompressible194

formulations of the filtered continuity and momentum equations are as follows:195

∂ūi
∂xi

= 0 (11)
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∂ūi
∂t

+
∂ūiūj
∂xj

= − ∂p̂

∂xi
−
∂τDij
∂xj
− 1

ρ0

∂p0(x, y)

∂xi
+ Fext (12)

where the bar denotes spatially resolved components; i, j, and k are the indices of the three196

spatial components x, y and z; u is the wind speed; t is time; p̂ is the modified pressure197

defined as [p̄(x, y, z, t)/ρ0−p0(x, y)/ρ0 +ρ0gz/ρ0 +(τkk)/3]; p and p0 are the static and mean198

pressure; ρ0 is the reference air density; τDij is the traceless part of the wind stress tensor;199

and Fext stands for the external forces applied to the wind, including those induced by the200

wind turbines. According to the Boussinesq eddy viscosity assumption, the traceless stress201

tensor τDij given in Eq. (12) is defined as202

τDij = −2νtS̄ij (13)

in which the kinematic eddy viscosity νt is defined using the subgrid scale model proposed203

by Smagorinsky [61] as,204

νt = (cs∆)2|S̄| (14)

where cs = 0.168 is the Smagorinsky constant, S̄ij = (∂ūi/∂xj + ∂ūj/∂xi)/2 is the filtered205

strain rate tensor, and |S̄| =
√

2S̄ijS̄ij is the norm of the filtered strain rate tensor. The206

external force Fext term in Eq. (12) includes the Coriolis force, the buoyancy force, and the207

force exerted by turbine blades that is calculated using the actuator line model presented in208

section 3.1.2. Accordingly, the external force Fext can be expressed as,209

Fext =
1

ρ0

Fi + g(
θ̄ − θ0

θ0

)δi3 − εi3kfūk (15)

where Fi is the force generated by the actuator line model, εijk is the alternating unit tensor,210

g stands for the gravitational acceleration, θ is the potential temperature, θ0 = 300K is the211
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reference temperature, δij is the Kronecker delta, and f is the Coriolis parameter defined as212

f = 2Ωsinφ in which Ω is the Earth rotational speed (∼ 2.95 × 10−5 rad/s), and φ is the213

site latitude. The following potential temperature equation needs to be solved coupled with214

Eqs. (11) and (12) to obtain the potential temperature needed to calculate the buoyancy215

term in Eq. (15),216

∂θ̄

∂t
+
∂(ūj θ̄)

∂xj
=
∂qj
∂xj

(16)

where qj represents the temperature flux defined as217

qj = − νt
Prt

∂θ̄

∂xj
, (17)

and Prt is the subgrid turbulent Prandtl number defined as [62],218

Prt =
1

1 + 2 l
∆

(18)

in which,219

l =


min(7.6νt

∆
(s−

1
2 ),∆) if s > 0

∆ if s ≤ 0

(19)

and,220

s =
g

θ0

∂θ̄

∂z
. (20)

Usually l = ∆, and hence, Prt = 1
3
.221
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3.1.2 The actuator line model222

The actuator line modeling, proposed by Sørensen and Shen [63], are usually employed along223

with large eddy simulations to model the effect of wind turbines. In this model, the turbine224

blades are represented by three rotating lines that are discretized into Nbe blade elements225

with centers located at (xn, yn, zn). Nbe is recommended to be at least 40. Using airfoil226

lookup tables, the aerodynamic forces are calculated for each blade element fai (xn, yn, zn, t).227

Summation of the aerodynamic forces of blade elements corrected via a regularization kernel228

yields the body force exerted by the blades onto the flow field,229

Fi =
40∑
n=1

fai (xn, yn, zn, t)

π3/2ε3
exp[−(

rn
ε

)2], (21)

where fai (xn, yn, zn, t) is the actuator element force, Fi is the force field projected as a body230

force onto CFD grid, rn is the distance between CFD cell center and the blade element,231

and ε is used to control the Gaussian width so that it spans from the leading edge to the232

trailing edge of the blade elements. The value of ε is recommended to be lc/4.3, where233

lc indicates the chord length of the blade elements, so at both trailing and leading edges234

(i.e. rn = lc/2) the exponential term is reduced to approximately 1% of its maximum [64].235

The power calculations are based on the aerodynamic torque that is exerted on the blades.236

Multiplying the aerodynamic torque by the rotational speed of the rotor yields the power237

output.238
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3.2 Nonlinear Reynolds-averaged Navier-Stokes (RANS) models239

3.2.1 Governing equations240

The continuity and the momentum equations using the Reynolds-averaged Navier-Stokes241

(RANS) decomposition are as follows,242

∂Ui
∂xi

= 0 (22)

ρUj
∂Ui
∂xj

= −∂P
∂xi

+
∂

∂xj

[
µ
(∂Ui
∂xj

+
∂Uj
∂xi

)]
+

∂

∂xj

[
µt

(∂Ui
∂xj

+
∂Uj
∂xi

)]
+ Fext (23)

in which µt is turbulent viscosity and is defined using a two-equation closure model, such as243

the k − ε or the k − ω models. Turbulent viscosity in the k − ε model is defined as,244

µt = ρCν
k2

ε
(24)

where k and ε are turbulent kinetic energy and the kinetic energy dissipation rate respectively.245

The transport equations for k and ε are,246

ui
∂k

∂xi
=

∂

∂xi

[(
ν +

νt
σk

) ∂k
∂xi

]
+ νt

(∂ui
∂xj

+
∂uj
∂xi

)∂ui
∂xj
− ε (25)

ui
∂ε

∂xi
=

∂

∂xj

[(
ν +

νt
σε

) ∂ε
∂xi

]
+ Cε1Pk

ε

K
− Cε2

ε2

k
(26)

where Cν , Cε1 and Cε2 are the standard model constants and (σk, σε) are the turbulent247

Prandtl numbers for k and ε respectively. In Eq. (23), Fext stands for the external forces248

applied to the wind, including those induced by the wind turbines. Wind turbine forces can249

be modeled through the actuator line model described in section 3.1.2, or using the actuator250

disk model described in the following section.251
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3.2.2 The actuator disk model252

In the actuator disk model, the wind turbine rotor is modeled as a disk with a diameter253

equal to the rotor diameter of the real wind turbine and a depth equal to the thickness of254

the blades. The Fext is then defined as,255

Fext =
1

2

ρCTU
2
0

∆x
(27)

where U0 is the inlet velocity at hub height level, ∆x stands for the control volume length256

and is equal to the actuator disk thickness, and CT is the thrust coefficient defined as,257

CT =
T

1
2
ρU2
∞AD

(28)

in which U∞ is free stream wind speed, AD = πD2/4 stands for the rotor swept area, and T258

is the thrust force and is a function of lift (CL) and drag (CD) coefficients obtained through259

airfoil lookup tables.260

3.3 Stochastic models261

The stochastic models are introduced to fill the gap between the accurate, however, compu-262

tationally expensive CFD-based models and less accurate, however, computationally efficient263

analytical models. One of the most effective stochastic models is the wake model proposed264

by Doubrawa et al. [65] based on large eddy simulations of an offshore wind farm. The265

proposed stochastic model was found to successfully reproduce the mean characteristics of266

the original LES wake, including its area and stretching patterns, statistics of the mean267

azimuthal radius, the mean and standard deviation of the wake width and height, and the268

velocity deficit and meandering. In this model, the cross section of the wake is defined as a269

series of wake radius versus azimuth rw(θ), where θ is the azimuth angle with respect to the270
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vertical direction and rw is the distance between the center of the wake from the boundary271

of the wake at the azimuth angle of θ. The rw is then decomposed into 〈rw〉 and r′w as272

rw = 〈rw〉+ r′w in which 〈rw〉 is the azimuthal mean radius and r′w stands for radii perturba-273

tions. At each iteration, 〈rw〉 is estimated using stochastic methods and r′w is obtained using274

spectral analysis. The azimuthal mean radius 〈rw〉 is further decomposed into a constant275

temporal mean 〈rw〉 and a dynamic perturbation 〈rw〉′ around the constant temporal mean.276

The values of 〈rw〉 are extracted upfront from the LES and will be provided by the user as277

initial conditions of the wake simulator. These values are given in [65] for different distances278

downstream of turbines. The perturbations 〈rw〉′, however, are obtained at every time step279

through a first-order auto-regressive model as,280

〈rw〉′t = ρ1〈rw〉′t−1 + ε(t) (29)

where ρ1 = 0.9 is the first-order auto-correlation for the 〈rw〉′ time series obtained from the281

LES data which was found to be approximately the same for different distances downstream,282

and ε(t) are the random innovations in the form of white noise that make up the time series283

variability. These innovations are randomly sampled from a normal distribution of mean284

µ = 0 and standard deviation σ = 0.05R which were determined based on the original LES285

time series of wake radii. More information on stochastic wake models can be found on286

[66, 67].287

3.4 Linearized RANS models288

3.4.1 Ainslie model289

Ainslie wake model, proposed by Ainslie [68], is a two-dimensional model based on the290

assumptions that wake of a wind turbine is axisymmetric and pressure gradients are negligible291

in the wake region. The continuity and momentum equations in free stream direction and292
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in cylindrical coordinates are as follows,293

1

r

∂(rv)

∂r
+
∂u

∂x
= 0 (30)

u
∂u

∂x
+ v

∂u

∂r
= −1

r

∂(ru′v′)

∂r
(31)

where,294

−u′v′ = ε(x)
∂u

∂r
(32)

where ε is eddy viscosity and is assumed to be a function of distance downstream of the wind295

turbine. Ainslie decomposed the eddy viscosity term into the ambient eddy viscosity of the296

atmosphere and the eddy viscosity generated by the wake as,297

ε(x) = εa + εw(x) = εa + kb
(
U∞ − uc(x)

)
(33)

in which k is constant and is empirically found to be 0.015, and b is the wake width and is298

defined as follows based on wind tunnel data,299

b =

√
3.56CT

4(U∞ − uc)(2− (U∞ − uc))
(34)

where uc is wind speed at the centerline of the wake. The Ainslie model is not valid in the300

near wake area (within 2D from downwind of the rotor), and the following Gaussian velocity301

profile is used as a boundary condition at x=2D,302

1− u(r)

U∞
= (U∞ − uc)exp

(
− 3.56

(r
b

)2
)

(35)
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where u is the wind speed at radial distance r with respect to the center line and axial303

distance x = 2D downwind of the wind turbine. The initial wind speed deficit at the304

centerline of the wake is,305

U∞ − uc = CT − 0.05− (16CT − 0.5)
I

10
(36)

where I is the ambient turbulence intensity.306

3.4.2 Fuga model307

Ott et al. [69] developed a linear RANS model called Fuga by employing a very simple308

closure instead of the one introduced through Eq. (24) to Eq. (26) in the k − ε model.309

According to the Fuga model,310

µt = ρku∗z (37)

where k = 0.4 is the Von Karman constant, z is the height from the surface, and u∗ is the311

shear velocity defined as u∗ =
√
τ/ρ in which τ is the surface shear stress.312

3.5 Empirical wake models313

There are several wake loss models that are based on experimental data, such as the Ishihara314

model developed by Ishihara et al. [70] by using wind tunnel data for a scaled model and315

assuming a Gaussian velocity profile. The wind speed deficit in the Ishihara model is given316

by,317

U∞ − u =

√
CTU∞
32

(1.666

k1

)2( x
D

)−p
exp
(
− r2

D2
w

)
(38)
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where Dw is the wake diameter defined as,318

Dw =
k1C

0.25
T

0.833
D1−0.5px0.5p (39)

in which p is defined as,319

p = k2(Ia + Iw) (40)

where Ia and Iw are the ambient turbulence intensity and the turbulence intensity induced320

by the wind turbines respectively. Iw is estimated as,321

Iw =
k3CT

max(Ia, 0.03)

(
1− exp

( −x2

25D2

))
, (41)

and coefficients k1, k2, and k3 are 0.27, 6, and 0.004 respectively.322

3.6 Kinematic (analytical) models323

The six most popular kinematic wake models, also called analytical wake models, which324

have been developed for wind energy applications are PARK (Jensen), Xie-Archer (XA),325

Bastankhah and Porte-Agel (BPA), Larsen, Frandsen and Geometric Model (GM). These326

models are respectively described in the following sections.327

3.6.1 PARK328

The PARK model, developed by Jensen [71, 72], is underpinned by two major assumptions;329

first, the velocity deficit is conserved as the wake linearly expands downstream of the wind330

turbine, and second, the velocity deficit is only a function of the distance x downstream of331
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the turbine. Accordingly,332

δ = δ(x) =
U∞ − U(x)

U∞
, (42)

where x is the axial distance downwind of the turbine and is often expressed as multiples333

of the turbine diameter D and U(x) is the wind speed at distance x. In the PARK model,334

Equation 42 is expressed as,335

δ(x) =
2a(

1 + kw
x
D

)2 , (43)

where kw is the wake decay coefficient, which is a dimensionless constant and its value336

depends on the surface roughness. Values of kw = 0.04 and kw = 0.078 are recommended for337

offshore and onshore conditions respectively. In Eq. (43), the induction factor a is expressed338

as a function of thrust coefficient CT as,339

a = 1−
√

1− CT . (44)

The diameter of the wake Dw is therefore,340

Dw = Dw(x) = D
(

1 + 2kw
x

D

)
. (45)

In the PARK model, the only relevant spatial variable is x, and hence, the wind speed341

and the wind speed deficit along y and z are uniform, which leads to an axis-symmetric342

conical-shaped wake.343

3.6.2 Xie and Archer (XA) model344

The XA wake loss model, developed by Xie and Archer [73] is the only wake loss model that345

truly depends on z and y as it predicts a wake that is not axis-symmetric or conical, but346
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ellipsoidal, which is a more realistic approximation, in particular in the presence of wind347

shear [74]. The wind speed deficit in the XA model is defined as:348

δ = δ(x, y, z) = δhub exp

{
−
[

(z −H)2

2σ2
z

+
y2

2σ2
y

]}
(46)

349

δhub = δhub(x) = 1−

√
1− CT

8σyσz
D2

(47)

350

σy
D

=
σy(x)

D
= ky

x

D
+ ε;

σz
D

=
σz(x)

D
= kz

x

D
+ ε, (48)

where H is the hub height, ky = 0.025 and kz = 0.0175 are the growth rate of the wake in351

the y and z directions, obtained from a fit to LES results of a single turbine wake under352

neutral stability [73].353

3.6.3 Bastankah and Porte-Agel (BPA) model354

Although the BPA model has an explicit dependency on y and z, where y and z are the355

span-wise and vertical coordinates, respectively, the cross-section of the wake is always a356

circle. The wind speed deficit in the BPA model is given by the following equation,357

δ = δ(x, y, z) = δhub exp

{
− 1

2
(
k∗ x

D
+ ε
)2

[(
z −H
D

)2

+
( y
D

)2
]}

(49)

358

δhub = δhub(x) = 1−
√

1− CT

8
(
k∗ x

D
+ ε
)2 (50)

where H is the hub height, k∗ = ∂σ
∂x

is the growth rate of the wake (which is not the same as359

kw = ∂Dw

∂x
in the previous models), σ is the standard deviation of the velocity deficit profile,360

and ε = 0.25
√
β. In the original study [75], k∗ was found to vary between 0.030 and 0.055,361
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from fitting LES results obtained with surface roughness z0 between 0.5 and 0.00005.362

3.6.4 Larsen model363

Larsen developed an analytical wake loss model using similarity technique and assuming that364

the wake region behind a wind turbine can be described via Prandtl’s turbulent boundary365

layer equations [76]. It was also assumed that flow is stationary, incompressible, and the366

wind shear is negligible. In the Larsen model, which was the recommended model by the367

European Wind Turbine Standards II (EWTS II) for use in wake loading calculations [77],368

the wind speed deficit is a function of both axial distance x and radial distance r, while in369

the PARK model the wake deficit is only a function of axial distance x. In the larsen model,370

the wind speed deficit is calculated as,371

δ = δ(x, r) = (51)

−1

9

[
CTA (x+ x0)−2] 1

3

{
r

3
2

[
3c2

1CTA (x+ x0)
]− 1

2 −
(

35

2π

) 3
10 (

3c2
1

)− 1
5

}2

,

where CT is the wind turbine thrust coefficient, x and r are the axial and radial distance of372

the wind turbine of interest from the upstream wind turbine, A = πD2/4 is the swept area373

of the rotor, c1 is a non-dimensional mixing length defined as,374

c1 =

(
D

2

)− 1
2

(CTAx0)−
5
6 , (52)

in which x0 is a non-dimensional reference distance defined as375

x0 =
9.5D(
D9.5

D

)3 − 1, (53)
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where is a measure of the wake diameter at distance 9.5D given by the following equation,376

D9.5 = Dnb +min(H,Dnb), (54)

where H is hub height and Dnb is a corrected wake diameter to take into account the blockage377

effect of the ground defined as,378

Dnb = max [1.08D, 1.08D + 21.7D(Ia − 0.05)] (55)

where Ia is the ambient turbulence intensity at hub height, assumed to be always greater379

than 5%. Similar to the PARK model, the wake diameter in the Larsen model is only a380

function of axial distance x as follows:381

Dw = Dw(x) = 2

(
35

2π

) 1
5 (

3c2
1

) 1
5 (CTAx)

1
3 , (56)

Similar to the PARK model, both wake diameter and wind speed deficit in the Larsen model382

are independent of free stream wind speed U∞.383

3.6.5 Frandsen model384

Frandsen et al. [78] developed an analytical wake loss model by applying the momentum385

equation to a control volume and by assuming self-similarity. They also assumed that the386

velocity deficit is only a function of the distance x downstream of the turbine and wind speed387

has a constant profile, similar to that of PARK model. The wind speed deficit in Frandsen388

model is defined as,389

δ = δ(x) =
1

2

(
1±

√
1− 2

A

Aw(x)
CT

)
, (57)
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in which A is the swept area of the rotor and Aw(x) = πD2
w(x)/4 is the cross section of the390

wake area at distance x downstream of the turbine, where Dw(x) is the wake diameter and391

is defined as,392

Dw(x) = D
(
β

k
2 + α

x

D

) 1
k
, (58)

in which α = 0.7, k is either 3 (Schlichting solution) or 2 (square root shape solution) [79],393

and β is the wake expansion parameter and is defined as,394

β =
1 +
√

1− CT
2
√

1− CT
. (59)

It should be mentioned that the Frandsen model is recommended for both small and large395

regular wind farms with rectangular shapes and equal spacings between turbines. Similar396

to the PARK and Larsen models, the Frandsen model is also independent of free stream397

velocity U∞.398

3.6.6 Geometric model (GM)399

The geometric model (GM) is a hybrid wake loss model that estimates the relative power400

generated by any downstream turbine with respect to the power generated by the front-row401

turbine [80]. The GM is considered as a hybrid model because it does not simulate the402

physical processes occurring in wakes, but rather uses empirical coefficients, derived from a403

multi-linear regression, to relate relative power production of a wind turbine sited in a wind404

farm to its geometric quantities, namely blockage ratio BR and blockage distance BD.405

The blockage ratio BRi of a wind turbine i in a given wind direction is the fraction of406

the swept area of turbine i that is blocked by the swept area of any upstream turbine. Value407

of BR is always between 0 and 1. A blockage ratio of 0 in a given wind direction means that408

the turbine is not blocked at all and receives undisturbed wind in that direction, whereas409
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a blockage ratio of 1 means that the turbine is completely blocked by the upstream wind410

turbines.411

The blockage distance BDi of wind turbine i, however, is a measure of the distance412

between the wind turbine of interest and the upstream blocking turbines. Hence, a larger413

blockage distance means a greater wind speed recovery, lower wake losses, and consequently414

more power production. Blockage ratio and blockage distance of a wind turbine for a given415

wind direction are calculated using the following equations:416

BRi =
1

A

∫
A

χdA, (60)

BDi =
1

A

∫
A

LχdA, (61)

where χ = 1 wherever the swept area of turbine i is blocked and zero otherwise, and L417

denotes the distance to the upstream blocking turbine. Once the two geometric properties418

are calculated for a given wind direction, then the relative power is obtained as follows:419

PREL
i =

Pi
Pfront

=


α + βBRi + γBDi/L∞ BRi 6= 0,

1 BRi = 0,

(62)

where Pi and Pfront are the power generated by turbine i and by the front turbine, and the420

fitting coefficients α, β, and γ depend on atmospheric stability. In the original paper [80],421

only values for neutral stability are presented.422

3.6.7 Wake overlapping423

When multiple wakes overlap, like in a wind farm, the wake overlapping is simply performed424

by taking the square root of the sum of the squared wind speed deficits induced by each425

individual wind turbine [72]. Hence, the total wind speed deficit at the location of turbine426
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j is,427

δTOT =

√√√√ N∑
n=1

δ2
i (xij), (63)

where N is the number of upstream wind turbines and xij is the distance between turbine j428

and the upstream turbine i. Depending on the employed model, each δi(xij) is calcultated429

using one of the wind speed deficit equations, i.e., either Eq. (43), or Eq. (46), or Eq. (49),430

or Eq. (51), or Eq. (57). Substituting the total wind speed deficit δTOT in Uj = (1−δTOT )U∞431

yields the wind speed experience by the wind turbine of interest Uj, and since wind power432

density is proportional to the cube of wind speed, relative power of turbine j is calculated433

as,434

Prel,j =

(
Uj
U∞

)3

(64)

where Prel,j is a measure of power produced by wind turbine j divided by the maximum435

power that is produced at the front row. The sum of squares (SS) method described in this436

section is the most popular wake overlapping technique used in industry. In addition to437

the SS technique, three other approaches have been introduced in literature, including the438

geometric superposition, the linear superposition, and the sum of energy deficits [81].439

4 Search algorithms440

A list of most popular search algorithms used for wind farm layout optimization analyses441

are presented in Table 4. According to literature, Genetic Algorithm (hereafter GA) is the442

most popular search algorithm that has been used to perform wind farm layout optimization443

analysis. The general procedure of the GA is illustrated in Fig. 3. First, the search process is444

initialized by creating random strings of 1 and 0, respectively standing for places with turbine445
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Table 4: Popular search algorithms for wind farm layout optimization problem.
Optimization technique Studies
Genetic Algorithms [50, 18, 57, 82, 7, 49]

[12, 83, 84, 56, 85, 86, 36]
Greedy Algorithms [5, 9, 87, 88, 40]
Particle Swarm Optimization [18, 85, 17, 89, 90, 20, 52, 91]
Ant Colony Search Algorithm [92, 93, 94]
Mixed Integer Linear and Quadratic Optimization [95, 96, 97, 19, 98]
Spread Sheet [99]
Simulated Annealing [54, 100, 40]
Definite Point Selection [101]

and without turbines. Then, the selection, which is to select and retain certain layouts that446

can generate higher annual energy productions according to a given selection probability,447

is conducted. During the crossover, selected layouts (parents) are combined to create new448

layouts (children). Then, parts of the layouts are randomly changed during the mutation. In449

the last step, layouts of the initial population are replaced with new layouts (children) that450

have been generated provided that the new layouts perform better in comparison with the451

layouts of the initial population. This process continues until the solutions converges or the452

termination criteria are met.453

A Greedy Algorithm is a heuristic procedure that tries to find an optimal solution close454

to the global optimum by determining a locally optimal solution at each stage. For instance,455

one wind turbine is randomly located within the legal area of the wind farm, and then456

the location of the second turbine is determined so that the annual energy production of457

the combination of the two turbines is optimized. Then, the optimal location of the third458

turbine is determined so that the annual energy production of the combination of the three459

turbines is maximized. This process continues until all turbines are placed within the wind460

farm area.461

Particle Swarm Optimization (hereafter PSO), developed by Kennedy and Eberhart [102],462

is a population based stochastic optimization technique that iteratively improves a candidate463

solution. The PSO technique is somehow similar to the Genetic Algorithm as the procedure464

is initialized using a population of random solutions. The major difference between the PSO465
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Figure 3: Genetic algorithm.

and the Genetic Algorithm is that in the PSO a randomized velocity is also assigned to each466

potential solution based on which the potential solutions, which are called particles, evolve467

through the hyperspace.468

In nature, ants initially move around randomly when they are searching for food, and469

once they find a food source they leave a pheromone trail on the ground on their way470

transferring the food back to their colony. This pheromone trail helps other ants to not471

to move on random paths, but instead to follow the trail to the food source. Based on472

this behavior, Marco Dorigo [103] developed an optimization algorithm namely Ant Colony473

Search Algorithm (hereafter ACSA). The ACSA has been adapted for the wind farm layout474

optimization problem by several researchers of this field. For instance, Eroğlu and Seçkiner475

[93] developed an algorithm in which the contribution of each turbine to the total wake476

losses of the farm is assumed to be the pheromone. Accordingly, more ants are assigned477

to turbines with higher pheromone to improve their location. Ants move these turbines in478
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random locations, and if any new location causes the total annual energy production of the479

wind farm to increase, then the previous layout will be replaced by the newly found more480

efficient layout. This procedure continues until a convergence occurs.481

Simulated Annealing (hereafter SA) is a probabilistic optimization technique which is482

more applicable to discrete spaces where determining an approximate global optimum is483

more preferred than a precise local optimum over the same amount of time. In fact, the484

SA is an approach that attempts to avoid entrapment in a poor local maximum by allowing485

an occasional downhill move. The acceptance of a downhill move depends on a control486

parameter, called the temperature, and on the magnitude of the variation. Rivas et al.487

(2009) used the SA algorithm coupled with a local search module to preform a wind farm488

layout optimization analysis. The disadvantage of the employed local search was its likelihood489

of finding a local rather than a global optimum. The main idea behind the SA algorithm490

developed by Rivas et al. (2009) is that the algorithm moves to a neighboring layout by491

removing a turbine, adding a turbine, or moving a turbine, and then, the annual energy492

production is calculated for the new layout. If the annual energy production of the new493

layout has increased in comparison to the previous layout, the new layout may be readily494

accepted, however, if the annual energy production has decreased, the new layout is accepted495

according to the probability calculated via the following equation,496

P (δAEP ) = exp(−|δAEP |/t) (65)

where δAEP is the variation of the annual energy production from the previous layout to497

the new layout and t stands for the control parameter called temperature that is gradually498

cooled (decreased) to make the system converge.499

In the Definite Point Selection algorithm (hereafter DPS), developed by Shakoor et al.500

[101], the wake of each wind turbine is assumed to be a triangle with one vertex located501
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upstream of the turbine and the other two vertices located downwind of the turbine (see Fig.502

4a). The divergence angle of the wake triangle is calculated as γ = 2tan−1(α) where α is the503

entrainment constant and is defined as α = 0.5/ln(z/z0) in which z and z0 are turbine hub504

height and surface roughness respectively. Overlapping of the wake triangles associated with505

wind turbines of a wind farm forms a wake polygon with n vertices (see Fig. 4b). The shape506

and the area of this polygon varies with the wind direction, hence, there are Ai polygons507

where i = 1 : 360 stands for the wind direction. A point inside the wind farm area that does508

not fall inside any of the predetermined wake polygons is then selected as the best position509

for placing the next turbine inside the wind farm area.510

Figure 4: (a) Wake triangle and (b) wake polygon employed in Definite Point Selection
algorithm to select the optimal place for wind turbines.

5 Practice your knowledge511

Increasing climate change concerns and extremely high economic, health and social expenses512

caused by adverse environmental impacts of fossil fuels have pushed the energy industry513

towards sustainable energy resources, in particular, wind energy. Although wind energy514

provides approximately 8% of the United States generating capacity [104], which is more515

than any other renewable source, the global contribution of wind energy is yet too small and516

for wind energy to play a more significant role in the market the issues associated with the517
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wind farm under-performance must be addressed. Solving the wind farm layout optimization518

problem is the most demanding task of wind farm design and development, hence, consider-519

able research is actively conducted to develop more efficient solutions to this problem. Latest520

findings, references and investigations on the major concepts associated with the wind farm521

layout optimization problem were reviewed and discussed in this chapter. That includes522

objective functions, optimization variables, wake loss models, and search algorithms. In this523

section, some specific cases are proposed to assist the readers to put the knowledge shared524

in this chapter into practice to some extent.525

526
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Case I: Shape of the wind farm527

If the area of the two lands given in Figure 5a are equal (A1 = A2), and assuming that528

the wind frequency at the location of both sites is as presented in Figure 5b, explain which529

area is more suitable for developing a wind farm.530

a)

b)

Figure 5: Case I.

Case II: Wake of wind turbines531

A square land is available for developing a wind farm with 5 horizontal axis wind turbines532

(see Figure 6). If wind frequency at the location of this land is as presented in Figure 6a,533

explain which of the three layouts proposed in Figures 6b to 6d is likely to be the most534

efficient one.535

536

Case III: Wind speed deficit in wind farms537

The layout of the Lillgrund wind farm, an offshore wind farm in Sweden with 48 SWT-538
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a)

b) c) d)

Figure 6: Case II.

2.3-93 wind turbines, is given in Figure 7. Assuming a southwesterly wind scenario along539

the direction of alignment of the wind turbines, draw a qualitative plot that illustrates the540

variation of the relative power production of wind turbines along columns C1 and C2. (Hint:541

Relative power production of a wind turbine at a given wind direction is defined as the ratio542

of power produced by that wind turbine to the power produced by the front row turbine.543

Hence, the relative power production of front row turbines is always 1, while the relative544

power productions of all downwind turbines are below 1.)545

546

Case IV: Yaw angle of wind turbines547

Norrekaer is an onshore wind farm with 13 Siemens SWT 2.3-93 wind turbines. The548

layout of this wind farm is illustrated in Figure 8. First, draw a qualitative plot that shows549

the variation of the relative power production of wind turbines along the column. How does550

this plot change if turbine 5 is yawed by 20 degrees as is illustrated in Figure 8b. How would551
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Figure 7: Cases III and XI.

the plot change if turbine 5 was yawed in the opposite direction?552

553

a) b)

Figure 8: Problems IV and V.

Case V: Variation of power production with wind direction554

Plot the relative power production of turbine T22 in Figure 7 and turbine T2 in Figure555

8a versus wind direction for wind directions varying from 0◦ to 360◦ with respect to the North.556

557

Case VI: Surface roughness558

36



How does the surface roughness affect the performance of a wind farm? Explain using the559

logarithmic boundary layer profile. A community wind farm and its associated wind rose is560

presented in Figure 9. Which turbine has the lowest production and needs to be relocated?561

Which turbine has the highest production?562

563

a)

b)

Figure 9: Case VI.

Case VII: Inner turbines versus outer turbines564

Figure 10a illustrates the wind frequency at the location of the area given in Figure 10b.565
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Among layouts proposed in Figures 10c and 10d, which one is potentially a more efficient one?566

567

a)

b) c) d)

Figure 10: Case VII.

Case VIII: Wind farm noise production568

In Figure 11, coordinates of the house and four SWT-2.3-96 wind turbines are (1337,292),569

(279,215), (395,821), (757,1243), and (1337,1431) m, respectively. Assuming that the wind570

turbines are the only noise sources, estimate the total sound pressure level at the location of571

the house.572

573

Case IX: Hub height optimization574

Assume both turbines shown in Figure 2 are SWT-2.3-93 manufactured by Siemens com-575
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Figure 11: Case VIII.

pany. If Hu = Hmax = 120 m, then plot the relative power of the downwind turbine versus576

its hub height Hd, where 10 m ≤ Hd ≤ Hmax.577

578

Case X: Fatigue loads579

How does the thrust coefficient of a wind turbine relate to the fatigue loads acting on580

that turbine?581

582

Case XI: Turbine type583

How would the annual energy production of the Lillgrund wind farm change if turbines584

Ti, where i = 2, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35,585

37, 38, 39, 40, 41, 42, 44, 46, 47, 48, were removed and the rest of them were replaced by586

SWT-8.0-154 turbines (see Figure 7). Conduct your calculations using the PARK model587

described in section 3.6.1 and the wind rose given in Vasel-Be-Hagh and Archer [5].588

589

Case XII: Atmospheric stability590

Atmospheric stability is a term used to qualitatively describe the potential for vertical591

motion in the atmosphere. Atmosphere is considered stable when it is stratified without any592
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vertical motion. This condition usually exists at night time, when there is a negative heat593

flux at the surface and the air is cooled down from the bottom. On the other hand, when the594

air is heated up from the bottom, which usually happens during day time, strong vertical595

motions are generated and atmosphere is considered unstable. At sunset and sunrise, when596

the heat flux from the surface is approximately zero, atmosphere is considered neutral. Ex-597

plain the effect of atmospheric stability on the wake of wind turbines and power production598

of wind farms assuming an equal geostrophic wind speed.599

600

Case XIII: Wind farms and hurricanes601

Discuss the possibility of using wind turbines to protect communities against hurricanes602

(see [105]).603
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