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a b s t r a c t

Instance selection is an important data pre-processing step in the knowledge discovery process. However,

the dataset sizes of various domain problems are usually very large, and some are even non-stationary,

composed of both old data and a large amount of new data samples. Current algorithms for solving this type

of scalability problem have certain limitations, meaning they require a very high computational cost over

very large scale datasets during instance selection. To this end, we introduce the ReDD (Representative Data

Detection) approach, which is based on outlier pattern analysis and prediction. First, a machine learning

model, or detector, is used to learn the patterns of (un)representative data selected by a specific instance

selection method from a small amount of training data. Then, the detector can be used to detect the rest of the

large amount of training data, or newly added data. We empirically evaluate ReDD over 50 domain datasets

to examine the effectiveness of the learned detector, using four very large scale datasets for validation. The

experimental results show that ReDD not only reduces the computational cost nearly two or three times by

three baselines, but also maintains the final classification accuracy.

© 2015 Elsevier Inc. All rights reserved.
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. Introduction

.1. Background

The large size of today’s data collections often makes them very

ifficult for the current data mining algorithms to handle properly.

s a consequence, data pre-processing has become one of the most

mportant steps in KDD (knowledge discovery in databases) for good

uality data mining. In other words, if the chosen dataset contains

oo many instances (i.e., data samples), it can result in large memory

equirements, slow execution speed, and over-sensitivity to noise.

nother problem with using the original data points is that there may

ot be any located at the precise points that would make for the most

ccurate and concise concept description (Pyle, 1999).

Data pre-processing is often implemented using instance selec-

ion, or data reduction. The aim of instance selection is to reduce the

ataset size by filtering out data from a given dataset that are noisy,

edundant or both, and so likely to degrade the mining performance

Wilson and Martinez, 2000; Li and Jacob, 2008). More specifically, in-

tance selection is used to shrink the amount of data, after which data

ining algorithms can be applied to the reduced dataset. Sufficient
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E-mail address: cftsai@mgt.ncu.edu.tw (C.-F. Tsai).

o

s

a

ttp://dx.doi.org/10.1016/j.jss.2015.04.038

164-1212/© 2015 Elsevier Inc. All rights reserved.
esults are achieved if the selection strategy is appropriate (Reinartz,

002).

This task is similar to outlier detection (Hodge and Austin, 2004)

r anomaly detection (Chandola et al., 2009) where the aim is to

iscover observations that lie an abnormal distance from other values

n a population. Simply, outliers are the unusual observations (or bad

ata points) that are far removed from the mass of data. In other

ords, they are further away from the sample mean than what is

eemed reasonable. Consequently, outliers could lead to significant

erformance degradation (Aggarwal and Yu, 2001; Barnett and Lewis,

994).

Filtering out the detected outliers is very useful for discovering

he normative patterns in the data (Knorr et al., 2000). Therefore,

rom the data mining perspective, the aim of instance selection can

e thought of as the same as outlier detection (Liu and Motoda, 2001).

n other words, performing instance selection and outlier detection

ver a given dataset can reduce the size of datasets and ensure that

hey contain higher proportions of representative data.

.2. Motivation

Defining whether outliers are lying an abnormal distance from

ther samples or not is a subjective process and defining what con-

titutes an outlier or determining whether or not an observation is

n outlier is a difficult problem. Many instance selection and outlier

http://dx.doi.org/10.1016/j.jss.2015.04.038
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1 In García-Pedrajas et al. (2010) and García et al. (2012), the reduction rates for

instance selection by state-of-the-art algorithms over various domain datasets are

very high, i.e. about 80% on average. This means that a large amount of data in each

dataset is filtered out.
detection methods have been proposed to detect and remove un-

representative data from a given dataset, and they have shown

some promising results (García et al., 2012; Hodge and Austin, 2004;

Chandola et al., 2009).

However, since we live in a non-stationary environment, datasets

in many domains do not always contain fixed numbers of data

samples. In other words, new data samples are continually being

added to the database for data mining, which causes the dataset

size to become larger and larger. As a consequence, wrong decisions

could be made if mining results are discovered from ‘out of date’

datasets.

For example, instance selection or outlier detection performed

over a given dataset D1 containing 10,000 examples collected at a spe-

cific time T1, results in a reduced dataset D1_reduced for the later mining

stage (where the size of D1_reduced is smaller than D1). However, after

some time, the size of D1 becomes larger as new data samples, Dnew,

are stored. As a result, a new larger dataset D2, composed of D1 and

Dnew, is created at time T2. At this point, there are two possible strate-

gies for performing instance selection or outlier detection. The first

one, the common strategy, is usually employed over D2. This can be

regarded as the static environment problem without considering the

growing dataset. The second one involves performing instance selec-

tion over Dnew resulting in Dnew_reduced where the reduced dataset of

D2 is the combination of D1_reduced and Dnew_reduced.

In these two cases, the computational cost of performing this data-

processing task becomes higher and higher as the new dataset be-

comes larger and larger in size. This creates the problem of a very

high computational cost which is required for performing instance

selection over D2 or Dnew.

To this end, we introduce a novel process, namely ReDD

(Representative Data Detection) which is based on analyzing (or

learning) the patterns of unrepresentative data that are identified in

the instance selection step. These patterns are then used as guide-

lines to predict whether a new data sample is representative or

not. This prediction task can be accomplished by training a super-

vised machine learning model. The hypothesis behind ReDD is that

if (un)representative data can be well predicted over a set of new

data samples, there is no need to perform instance selection again

over a new, larger dataset. For the previous example, we only need to

train a specific classifier over a two-class training set composed of the

representative group (i.e., D1_reduced) and the unrepresentative group

(i.e., D1 − D1_reduced). The classifier can then be used to distinguish

between representative and unrepresentative data over Dnew.

Consequently, the time cost of ReDD over Dnew can be much

smaller than that of performing instance selection over D2 or Dnew

since the time for performing on-line classification as testing is

usually much shorter than off-line learning as training (Chang et

al., 2010; Edakunni and Vijayakumar, 2009). In our case, the total

time for training a classifier over D1, and testing the classifier to

perform representative data detection as the on-line classification

task over Dnew, is smaller than directly performing instance selec-

tion over D2 or Dnew, especially when D2 or Dnew is certainly larger

than D1.

Note that detecting (un)representative data using ReDD is differ-

ent from the existing outlier detection methodology used to detect

(non)outliers. First, outlier detection aims to detect whether a new

exemplar lies in a region of normality, but ReDD focuses on training

a classifier to classify a new exemplar into one of two pre-defined

classes (i.e., representative and unrepresentative classes) without

considering the ‘normal’ and ‘abnormal’ data distributions. Second,

for supervised learning based upon outlier detection approaches, the

number of outliers in the training dataset is usually very small. In

addition, the training dataset is typically based on manually labeling

normal and abnormal data. On the other hand, the generation of the

training dataset in ReDD is based on instance selection, which usually

contains a large number of unrepresentative data and a small number
f representative data,1 with the labeling for the two groups of data

eing fully automatic.

The rest of this paper is organized as follows. Section 2

riefly reviews related literature of instance selection and out-

ier detection. Section 3 introduces the proposed ReDD process for

un)representative data analysis and prediction. Section 4 presents

he experimental results and the conclusion is provided in Section 5.

. Literature review

.1. Instance selection

Instance selection can be defined as follows. Given a dataset D

omposed of training set T and testing set U, let Xi be the ith instance

n D, where Xi = (X1, X2, . . . , Xm) which contains m different features.

et S�T be the subset of selected instances that result from the ex-

cution of an instance selection algorithm. Then, U is used to test a

lassification technique trained by S (Cano et al., 2003; García et al.,

012).

In the literature, there are a number of related studies propos-

ng instance selection methods for obtaining better mining qual-

ty. Specifically, Pradhan and Wu (1999) and Jankowski and

rochowski (2004) surveyed several relevant selection techniques,

hich can be divided into three application-type groups: noise fil-

ers, condensation algorithms, and prototype searching algorithms.

n addition, extensive comparative experiments were conducted by

ilson and Martinez (2000), García-Pedrajas et al. (2010), and García

t al. (2012). Some cutting-edge instance selection algorithms have

een identified, such as Decremental Reduction Optimization Proce-

ure 3 (DROP3), and Genetic Algorithms (GA), which make the k-NN

lassifiers provide better performance over other instance selection

ethods.

The noise-filtering algorithms are usually based on the nearest

eighbor principle to remove data points which do not agree with

he majority of its k nearest neighbor. For condensation algorithms,

B3 (Aha et al., 1991) and DROP3 (Wilson and Martinez, 2000) are

wo representative algorithms. In IB3, instance x from the training set

is added to a new set S if the nearest acceptable instance in S has

ifferent class than x, in which acceptability is defined by a confidence

nterval

p + z2

2n
± z

√
p(p−1)

n
+ z2

2n2

1 + z2

n

(1)

here z is a confidence factor, p is the classification accuracy of a

iven instance (while added to S), and n is equal to the number of

lassification-trials for the given instance (while added to S).

On the other hand, the Decremental Reduction Optimization Pro-

edure 1 (DROP1) uses the following basic rule to decide if it is safe to

emove an instance from the instance set S (where S = T originally):

Remove P if at least as many of its associates in S would be

classified correctly without P. (2)

DROP2 starts the process from sorting instances according to their

istances from the nearest opposite class instance. The DROP3 algo-

ithm additionally performs the noise filtering approach before start-

ng the DROP2 algorithm.

Finally, the genetic algorithm (GA) (Cano et al., 2003) is one type

f prototype searching algorithm. In general, it uses a population

f strings (called chromosomes), which encode candidate solutions
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Fig. 1. The ReDD process.
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called individuals) to an optimization problem. Particularly, the ge-

etic information (i.e., chromosome) is represented by a bit string

such as binary strings of 0s and 1s) and sets of bits encode the so-

ution. That is, a chromosome consists of m genes with two possible

tates: 1 and 0. If the gene is 1, then its associated instance is included

n the subset of T represented by the chromosome. S is then evaluated

nd coded by a chromosome through a chosen fitness function, which

s usually based on the 1-nearest neighbor classifier, to measure the

lassification rate associated with S. The objective of GA is to max-

mize the classification rate and minimize the number of instances

btained.

As discussed previously, one major limitation of instance selec-

ion is the difficulty of processing very large scale (non-stationary)

atasets. When the dataset size grows to a certain level, instance se-

ection should be executed again over the larger dataset even though it

as already been performed over the previous smaller dataset. Con-

equently, the computational cost of performing instance selection

apidly increases as the dataset size becomes larger and larger.

.2. Outlier detection

By definition, outliers or anomalies are patterns in the data that

o not conform to a well defined notion of normal behavior. Since

he aim of outlier detection is to identify outliers, it is related to the

nstance selection task where a set of outliers represented by O can

e simply obtained, which is based on T − S.

In general, there are three fundamental outlier detection ap-

roaches. The first one is to determine the outliers with no prior

nowledge of the data, which is analogous to unsupervised cluster-

ng. The second approach is to model both normality and abnormal-

ty, which is analogous to supervised classification where pre-labeled

ata illustrating what constitutes normal or abnormal are required.

he final approach is to model normality only, or in a very few cases to

odel abnormality, which is analogous to a semi-supervised recog-

ition task (Hodge and Austin, 2004). Outlier detection is usually

ased on analyzing the boundary between normal and abnormal re-

ions where outliers can be detected if they were outside the normal

egion (i.e., the first approach). Some supervised learning based de-

ection algorithms can be employed for this task (i.e., the second and

hird approaches). In particular, predictive models are built for nor-

al vs. anomalous classes. However, the current problem is that the

nomalous instances in the training dataset are far fewer than nor-

al ones. In addition, it is usually difficult to obtain accurate and

epresentative labels, especially for the anomalous class. Typically,

abeling is often done manually by a human expert, which is very

ime-consuming (Chandola et al., 2009). Similar to instance selection,

erforming outlier detection requires very high computational costs

or very large scale datasets.

. ReDD: representative data detection

.1. The ReDD process

In order to reduce the computational cost for instance selection on

ontinually growing or very large datasets (cf. Section 2.1), where the

umber of anomalous instances in the training set via manual labeling

or (supervised learning based) outlier detection is small (cf. Section

.2), the ReDD (Representative Data Detection) process is proposed,

s shown in Fig. 1.

Given a dataset D, divided into D1 and D2, D1�D2 = D, where D1

s simply defined as 50% of D. ReDD is composed of two stages: the

raining dataset generation stage, and the representative data detec-

ion stage. The solid lines indicate the first stage which is to generate

he training dataset, based on the common instance selection process.

hat is, given a dataset (D1) the results of performing instance selec-

ion include a representative data (RD) dataset and unrepresentative
ata (URD) dataset. In the literature, the RD dataset has generally been

sed for the data mining process, while the unrepresentative data has

ot been further analyzed.

The dotted lines indicate the representative data detection stage

omprised of two steps. The first step is based on constructing a clas-

ifier by using a training dataset composed of RD and URD datasets

roduced in the first stage. In other words, the patterns of RD and URD

re identified and learned. As a result, a classifier, the RD/URD detec-

or, is developed. However, it should be noted that effectively identi-

ying and learning the RD and URD patterns is heavily dependent on

he instance selection and classification techniques used. Therefore,

everal different instance selection and classification methods will be

ompared in this paper.

The RD/URD detector used in the second step utilizes a form of

imilarity matching to classify the ‘new’ dataset (D2) into one of the

D and URD classes. This step is much more efficient than the con-

entional approach of directly performing instance selection over the

ew and larger dataset composed of the old and new data samples,

.e. D.

One simple way to accomplish similarity matching is to apply

he k-nearest neighbor approach (Jain et al., 2000) to measure the

istances between each new data sample and the training set. The

hortest distance between new data and a specific piece of training

ata determines the class to which the new data belongs. Therefore, if

he new data is classified into the RD class, then it is stored into the RD

ataset, which is used for the mining purpose as its size continuously

ncreases; otherwise it is stored into the URD dataset. However, in

his paper, several different techniques will be discussed to develop

he RD/URD detector for comparison.

It should be noted that ReDD is not proposed to compete with

xisting instance selection algorithms. Instead, ReDD is designed to

peed up the instance selection procedure no matter which instance

election algorithm is used. In other words, when a specific instance

election algorithm is chosen as the best or the optimal solution for

he instance selection purpose, it can be integrated within ReDD to re-

uce the computational time when a very large scale dataset is used.

n addition, ReDD is specifically designed for large scale datasets. For

erforming instance selection over small scale datasets, it is unlikely

o require large computational time by using existing instance selec-

ion algorithms. In this case, to conduct the ReDD procedure based on

ome instance selection algorithm is unnecessary.
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(a)

D1 instance
selection

RD dataset

URD dataset

RD/URD
detector

(b)

D1 + D2 RD/URD
detector

RD dataset 

classifier

URD dataset

(c)

classification 
accuracy

D3 classifier

(d)

the original
dataset

D1

D2

D3

Fig. 2. The operating process of ReDD. (a) Divide the original dataset into training

(D1 and D2) and testing (D3) sets, (b) Training the RD/URD detector, (c) Training the

classifier using the RD dataset, (d) Testing the classifier.

accuracy
classification

D1 + D2 instance
selection

RD dataset for
classifier

classifier

URD dataset

D3 for
classifier

Fig. 3. The baseline operating process.

Table 1

Computational complexities of ReDD and the baselines.

ReDD Baselines

GA O(n
2
)2 + O(n(log n)2)+ O(n log n) O(n2)

IB3 O((n
2
)2log2

n
2
)+ O(n(log n)2)+ O(n log n) O(n2log2n)

DROP3 O(n
2
)3 + O(n(log n)2)+ O(n log n) O(n3)
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3.2. The operating process

The operating processes of ReDD are shown in Fig. 2. To simulate a

real world problem, where instance selection is inevitably performed

over large scale datasets, we divide each dataset into three subsets

(Fig. 2(a)), namely D1, D2, and D3, where D1 and D2 represent the

data collected in T1 and T2, respectively, and are used as the training

sets (T2 is more recent than T1), and D3 is the testing set used to test

the classifier’s performance. Note that one can also regard this prob-

lem under a static environment meaning that D1 + D2 represent the

training set and D3 is the testing set. In this study, we randomly select

40% of the original dataset for D1 and D2 individually and the final

20% for D3. Moreover, this partitioning strategy was run five times

in order to avoid bias in the classification result. Therefore, the final

classification accuracy reported in this paper is based on averaging

the five results produced by five different training and testing sets,

respectively.

First of all, instance selection is performed to identify RD and URD

datasets over D1 (Fig. 2(b)). Similar to the previous study, IB3, DROP3,

and GA are used for the task of instance selection. Then, the RD and

URD datasets are used to construct the RD/URD detector with some

classification technique.

Next, the RD/URD detector is used to replace conventional in-

stance selection and to identify RD and URD datasets over D1 and

D2, respectively (Fig. 2(c)). Note that the RD and URD datasets in

Fig. 2(b) and (c) should be different. The resultant RD datasets identi-

fied by the RD/URD detector from D1 and D2 are used as the training

set to construct the classifier. Finally, D3 is used to test the classi-

fication accuracy of the classifier. In this paper, the support vector

machine (SVM) classifier is used. Therefore, the following classifica-

tion results presented in Sections 4.1 and 4.2 mean the classification

performance of SVM over D3.

To find the baseline, which is different from our ReDD approach

(shown in Fig. 3), a specific instance selection algorithm is utilized

over D1 + D2 for each very large scale dataset to identify the RD

dataset which is used as the training set to train the classifier. Conse-
uently, the computational times to find the baseline and ReDD can

e compared in terms of instance selection.

Our aim is to not only to reduce the computational time needed to

dentify the RD datasets over very large scale datasets, but also ensure

hat the performance of the classifier based on the ReDD approach is

omparable with or even better than the one based on the baseline

nstance selection approach.

.3. Computational complexity

The computational complexities of three state-of-the-art algo-

ithms (including GA, IB3, and DROP3) for instance selection are

(n2), O(n2log2n), and O(n3) respectively (Jankowski and Grochowski,

004). ReDD additionally includes the processes of training and test-

ng the RD/URD detector. If the detector is based on a CART classi-

er, the computational complexities of training and testing CART are

(n(log n)2) and O(nlog n) respectively. Table 1 shows a comparison

f the computational complexities of ReDD and the baselines (i.e., GA,

B3, and DROP3). Note that in this study, the ‘n’ in ReDD is only half of

he ‘n’ in the baselines and is therefore denoted by n
2 . In other words,

he ‘n’ can be regarded as the number of data samples in the chosen

ataset (D).

Since the level of computational complexity of the training and

esting CART in ReDD is very low, the complexities of O(n(log n)2) and

(nlog n) can be omitted. In this case, the time complexity of ReDD is

ess than the baselines.

For example, if n is 100 (i.e., 100 data samples), the computational

omplexities of DROP3 and ReDD are (100)3 and (50)3, which are

,000,000 and 125,000 respectively. As ‘n’ increases, the computa-

ional effort required becomes larger and larger. This indicates that

heoretically, ReDD can save more time for instance selection when

he number of data samples is certainly large.

.4. Research questions

The proposed ReDD process raises two questions or research ob-

ectives. Since using different instance selection algorithms can pro-

uce different training sets and different classification techniques

ave different learning capabilities leading to different detection per-

ormances, our first research question is: Can we construct a classi-

er based on a training set generated by the instance selection result,

hich is able to distinguish reasonably well between representative

nd unrepresentative data over a given testing set? In this paper,

he detector’s performance is measured by the rate of classification

ccuracy in order to fairly compare with the classification accuracy

btained by the baseline instance selection procedure (cf. Section 4.1).
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Table 2

Average classification of SVM based on the BPNN, CART, k-NN, NB, and SVM detectors.

BPNN CART k-NN NB SVM

GA (69.61%) 64.057% (3) 69.326% (1) 61.235% (5) 62.810% (4) 69.135% (2)

IB3 (23.56%) 78.915% (3) 80.389% (1) 77.755% (4) 76.835% (5) 80.056% (2)

DROP3 (46.43%) 79.871% (3) 80.581% (1) 79.436% (4) 72.083% (5) 80.143% (2)

Table 3

Average classification of BPNN, CART, k-NN, NB, and SVM over 15 larger datasets.

BPNN CART k-NN NB SVM

GA 54.805% (3) 57.838% (1) 52.707% (5) 54.210% (4) 57.250% (2)

IB3 81.258% (3) 82.955% (2) 77.774% (4) 76.563% (5) 82.976% (1)

DROP3 85.562% (4) 86.816% (1) 86.027% (3) 80.253% (5) 86.561% (2)

Table 4

Average classification of BPNN, CART, k-NN, NB, and SVM over 2-class datasets.

BPNN CART k-NN NB SVM

GA 65.475% (3) 71.908% (1) 62.784% (5) 63.837% (4) 71.682% (2)

IB3 77.460% (4) 79.285% (1) 76.803% (5) 78.550% (3) 79.209% (2)

DROP3 76.745% (3) 77.914% (2) 75.213% (4) 71.023% (5) 78.220% (1)
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Furthermore, the second research question is: If some existing

lassification technique(s) used as the detector(s) in the ReDD process

ould perform similar or better than the baseline instance selection

pproach, can ReDD based on the better detector(s) provide higher

lassification accuracy than the baseline over larger scale datasets (cf.

ection 4.2)?

. Experiments

.1. Study one: Research Question 1

.1.1. Experimental setup

In study one, 50 different domain datasets from the UCI Ma-

hine Learning Repository2 were selected for the experiments

García-Pedrajas et al., 2010). The numbers of data samples and input

ariables of these datasets ranged from 57 to 1099 and from 4 to 101,

espectively. In addition, the number of classes to be classified ranged

rom 2 to 29.

For each dataset, three well-known instance selection algorithms

re used to generate the RD and URD datasets: IB3 (Aha et al., 1991),

ROP3 (Wilson and Martinez, 2000), and a genetic algorithm (GA)

Cano et al., 2003).

Next, five popular classification techniques are used to con-

truct the classifiers for the RD/URD detectors, namely the back-

ropagation neural network (BPNN), CART decision tree, k-nearest

eighbor (k-NN), naïve Bayes (NB), and support vector machine (SVM)

Wu et al., 2008) techniques. Note that these classifiers are con-

tructed with the WEKA data mining software (Witten and Frank,

005) and WEKA’s default settings are used for all parameters.

.1.2. Experimental results

Table 2 shows the average classification accuracy of SVM based

n the five constructed classifiers as the RD/URD detectors over the

0 datasets generated by GA, IB3, and DROP3. Note that the values

ollowed by the instance selection algorithms mean the average re-

uction rates.3 As one can see, the CART and SVM classifiers perform

est and second best for detecting (un)representative data. On the

ther hand, since GA filters out the most data samples, this indicates
2 http://archive.ics.uci.edu/ml/.
3 The reduction rate represents the percentage of the data sample, which are filtered

ut from a given training set.
hat over-selection occurs in performing GA, and this leads to lower

lassification accuracy.

According to García-Pedrajas et al. (2010), the average classifi-

ation accuracy of the 1-NN classifier without performing instance

lassification is 79.47% over the 50 datasets. This shows that CART

nd SVM perform reasonably well and have the potential to be used

s the (un)representative data detectors. However, we believe that

ART is much more suitable for the ReDD process since it can not

nly make SVM provide the highest classification rate on the basis of

hese three well-known instance selection algorithms, but also pro-

uce some decision rules for the patterns of (un)representation data,

hich are easily interpreted by a knowledge-domain expert (i.e., “IF-

HEN” rules).

To demonstrate the suitability of using CART as the

un)representative data detector, we further examine some specific

lassification results over larger datasets among the 50 datasets (i.e.,

here the number of data samples is larger than 1000) and 2-class

atasets (i.e., binary classification), which are shown in Tables 3 and

, respectively. As we can see, CART can provide the best and sec-

nd best classification accuracy no matter which instance selection

lgorithm is used in the ReDD process.

In short, we can identify the best classifier (i.e., CART) as the de-

ector for the ReDD process for distinguishing between representa-

ive and unrepresentative data over different datasets. However, the

lassification rates of the classifiers depend on the training dataset

enerated from the used instance selection algorithm.

.2. Study two: Research Question 2

.2.1. Experimental setup

To answer the second research question in the second experimen-

al study, four very large scale datasets are used. They are the KDD

up4 2004 (Protein prediction) and 2008 (Breast cancer), Person ac-

ivity,5 and Covertype6 datasets. Table 5 lists the basic information

or these four datasets.

As identified in Section 4.1.2, CART performs the best as the

D/URD detector over the small scale datasets. Two other detectors,

hich are k-NN and SVM are also used for comparison.
4 http://www.sigkdd.org/kddcup/.
5 http://archive.ics.uci.edu/ml/datasets/Localization+Data+for+Person+Activity.
6 http://archive.ics.uci.edu/ml/datasets/Covertype.

http://archive.ics.uci.edu/ml/
http://www.sigkdd.org/kddcup/
http://archive.ics.uci.edu/ml/datasets/Localization+Data+for+Person+Activity
http://archive.ics.uci.edu/ml/datasets/Covertype


6 W.-C. Lin et al. / The Journal of Systems and Software 106 (2015) 1–8

Table 5

Basic information for the four datasets.

Datasets No. of features No. of samples No. of classes

Breast cancer 117 102,294 2

Covertype 54 581,012 7

Person activity 8 164,860 11

Protein prediction 74 145,751 2
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4.2.2. Experimental results

Table 6 shows the average classification accuracy of CART, k-NN,

and SVM over the four very large scale datasets created by the ReDD

and baseline approaches based on IB3, DROP3, and GA respectively.

Note that the underlined numbers mean the best performance in each

dataset. Similar to Table 2, the values followed by the instance selec-

tion algorithms represent the reduction rates over the four datasets,

respectively.

We can see that the final classification accuracies of the base-

line instance selection methods and ReDD are very similar. In most

cases, the performance difference in average classification accuracy

obtained with the baseline and ReDD approaches are less than 1%.

This demonstrates the robustness of the ReDD approach, which does

not need to take the full training set into account, but can still main-

tain the final classification accuracy with the three different baseline

instance selection methods.

Furthermore, Table 7 shows the average processing times for the

baselines and ReDD, including the times for training and testing the

detector. Note that detector training and testing in ReDD is based on

CART. As we can see, on average, it is nearly two or three times faster

to use the ReDD approach than the baselines.

In summary, our experimental results demonstrate the effec-

tiveness and efficiency of the proposed ReDD approach for large

scale instance selection. More specifically, we show that super-
Table 6

Average classification accuracy of CART, k-NN, and SVM

Breast cancer Covertype

Baseline ReDD Baseline ReDD

Instance selection by IB3 (42.02

CART 79.32% 89.69% 91.96% 91.70%

k-NN 77.84% 86.31% 96.06% 95.88%

SVM 87.83% 98.46% 48.77% 48.71%

Avg. 81.66% 91.49% 78.93% 78.76%

Instance selection by DROP3 (10.8

CART 99.38% 99.20% 92.51% 92.83%

k-NN 99.44% 99.45% 95.70% 95.87%

SVM 99.44% 99.43% 48.66% 48.66%

Avg. 99.42% 99.36% 78.96% 79.12%

Instance selection by GA (56.96%

CART 99.31% 99.05% 91.13% 90.31%

k-NN 99.35% 99.35% 95.87% 95.54%

SVM 99.36% 99.46% 48.63% 48.64%

Avg. 99.34% 99.29% 78.54% 78.16%

Table 7

Average processing times for baselines and ReDD (hours)

Breast cancer Covertype

Baseline ReDD Baseline ReDD

IB3 12.13 3.17 1997.81 996.3

DROP3 455.29 227.86 2206.84 1045.4

GA 1839.43 1408.03 2812.55 1408.0

Avg. 768.95 546.35 2339.07 1149.9
ised learning techniques can be trained to effectively detect

un)representative data samples for the instance selection purpose.

n addition, only half of the original training set is needed when

sing the ReDD approach for large scale instance selection, which

reatly reduces the time complexity during instance selection. More-

ver, the ReDD approach maintains the final classification accuracy of

he baseline instance selection methods over all of the training data

amples.

.3. Sensitivity analysis

To further understand the effect of different sizes of D1 on the

erformance of ReDD, seven different dataset sizes of D1 are consid-

red for the comparison. They are 50%, 30%, 10%, 5% of D1 and 1000,

00, and 100 data samples of D1. In addition, IB3 and DROP3 are used

or the instance selection task for the detector, which is based on

ART. The reasons of not using GA is because the classification per-

ormance of using GA is similar to the ones of using IB3 and DROP3,

nd performing GA for instance selection requires very large com-

utational cost. Fig. 4 shows the comparative results over the four

atasets.

As we can see, when the dataset sizes of D1 become smaller, the

nal classification accuracy degrades gradually. This indicates that

lthough using certainly fewer data samples of D1 can largely reduce

he computational cost of performing instance selection, it cannot

ake the classifiers perform similar to the baseline instance selection

pproach.

However, these results imply that using 30% of D1 still can pro-

uce reasonably well classification accuracy. In other words, when

he dataset size is extremely large, the classifier based on using 30%

f D1 in the ReDD process is likely to perform similar to the one based

n the baseline instance selection approach. Moreover, the compu-

ational time can be largely reduced, which is shorter than using

0% of D1.
by ReDD and the baselines.

Person activity Protein prediction

Baseline ReDD Baseline ReDD

%/43.8%/18.54%/40.69%)

62.46% 62.65% 91.17% 96.64%

62.26% 62.59% 81.16% 87.16%

61.15% 61.22% 99.11% 99.07%

61.96% 62.15% 90.48% 94.29%

5%/36.46%/44.89%/38.04%)

67.85% 64.33% 99.51% 99.53%

69.14% 64.67% 99.38% 99.35%

60.72% 60.04% 99.04% 99.09%

65.90% 63.01% 99.31% 99.32%

/69.89%/59.46%/62.44%)

62.53% 61.58% 99.48% 99.54%

62.97% 62.35% 99.20% 99.16%

60.74% 60.68% 99.08% 99.08%

62.08% 61.54% 99.25% 99.26%

.

Person activity Protein prediction

Baseline ReDD Baseline ReDD

9 2018.51 507.48 35.47 9.25

7 457.2 228.32 973.53 485.4

3 1332.89 323.44 2316.63 594.93

6 1269.53 353.08 1108.54 363.19
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Fig. 4. The classification results of using different dataset sizes of D1. (a) Breast cancer, (b) Covertype, (c) Person activity, (d) Protein prediction.
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. Conclusion

It is difficult for the current instance selection algorithms to ef-

ciently handle very large scale datasets or non-stationary datasets

omposed of old data and very large amounts of new data samples. In

ost past studies, more attention has been paid to effective instance

election (or outlier detection) with a reduced or ‘clean’ dataset be-

ng produced by discarding detected outliers prior to the later data

ining process, such as classification or clustering. However, even

hough the discarded instances (or outliers) are often bad data points,

hey can contain valuable information, which if removed, is never

nalyzed in instance selection.

To solve the scalability problem for large scale instance selection,

ur proposed ReDD approach focuses on learning the patterns of the

utliers. Specifically, analysis of unrepresentative data (or outliers) is

ased on identifying patterns in the outliers, such as rule extraction

rom outliers or training a machine learning model, which can then be

sed to detect whether the new data samples are (un)representative

ata.

The results of our first experiment show that current ma-

hine learning techniques trained based on a training dataset com-

osed of representative and unrepresentative data samples identi-

ed by current instance selection algorithms can effectively detect

un)representative data in new unknown datasets. The second set of

xperimental results (carried out over four very large scale datasets)

emonstrates the effectiveness and efficiency of the ReDD approach.

n particular, the final classification accuracy of the three baseline in-

tance selection algorithms and ReDD are very similar, but the time

omplexity of ReDD is nearly two to three times less than for the

aselines.

Several issues can be considered in future work. First, since anal-

sis of unrepresentative data is based on the detection of outliers,

he effectiveness of the instance selection algorithm is a very impor-

ant issue. That is, more sophisticated algorithms can be applied in

eDD. Second, how to effectively extract useful rules from the out-

iers and what are important outlier patterns are the critical factors

or successful unrepresentative data analysis. Last but not least, clas-

ifying new data samples into representative and unrepresentative
ata can facilitate the instance selection task. There are many types

f classification techniques that can be applied to this problem.
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