
Soft Comput
DOI 10.1007/s00500-014-1339-0

METHODOLOGIES AND APPLICATION

Instance selection by genetic-based biological algorithm

Zong-Yao Chen · Chih-Fong Tsai · William Eberle ·
Wei-Chao Lin · Shih-Wen Ke

© Springer-Verlag Berlin Heidelberg 2014

Abstract Instance selection is an important research prob-
lem of data pre-processing in the data mining field. The
aim of instance selection is to reduce the data size by fil-
tering out noisy data, which may degrade the mining perfor-
mance, from a given dataset. Genetic algorithms have pre-
sented an effective instance selection approach to improve
the performance of data mining algorithms. However, current
approaches only pursue the simplest evolutionary process
based on the most reasonable and simplest rules. In this paper,
we introduce a novel instance selection algorithm, namely a
genetic-based biological algorithm (GBA). GBA fits a “bio-
logical evolution” into the evolutionary process, where the
most streamlined process also complies with the reasonable
rules. In other words, after long-term evolution, organisms
find the most efficient way to allocate resources and evolve.
Consequently, we can closely simulate the natural evolution
of an algorithm, such that the algorithm will be both effi-
cient and effective. Our experiments are based on comparing
GBA with five state-of-the-art algorithms over 50 different

Communicated by V. Loia.

Z.-Y. Chen · C.-F. Tsai (B)
Department of Information Management,
National Central University, Jhongli, Taiwan
e-mail: cftsai@mgt.ncu.edu.tw

W. Eberle
Department of Computer Science, Tennessee Technological
University, Cookeville, USA

W.-C. Lin
Department of Computer Science and Information Engineering,
Hwa Hsia Institute of Technology, New Taipei, Taiwan

S.-W. Ke
Department of Information and Computer Engineering,
Chung Yuan Christian University, Jhongli, Taiwan

domain datasets from the UCI Machine Learning Repository.
The experimental results demonstrate that GBA outperforms
these baselines, providing the lowest classification error rate
and the least storage requirement. Moreover, GBA is very
computational efficient, which only requires slightly larger
computational cost than GA.

Keywords Instance selection · Data reduction ·
Data mining · Machine learning · Genetic algorithms ·
Biological evolution

1 Introduction

In data mining or knowledge discovery in databases (KDD),
data pre-processing has became one of the most important
steps for good quality data mining. That is, if the chosen
dataset contains too many instances (i.e., data samples), it can
result in large memory requirements, slow execution speed,
and over-sensitivity to noise. In addition, one problem with
using the original data points is that there may not be any data
points located at the precise points that would make for the
most accurate and concise concept description (Pyle 1999).

Since the size of today’s data collections often exceeds
the size of data which current data mining algorithms han-
dle properly, instance selection or data reduction should be
considered before performing data mining tasks such as data
classification and clustering. Instance selection is an impor-
tant data pre-processing step in the data mining or KDD
process. The aim of instance selection is to reduce the data
size by filtering out noisy data from a given dataset, which
are likely to degrade the mining performance (Wilson and
Martinez 2000; Li and Jacob 2008). In particular, instance
selection is used to shrink the data, and then data mining
algorithms can be applied to the reduced dataset, which still

123

Z.-Y. Chen et al.

achieve sufficient results if the selection strategy is appropri-
ate (Reinartz 2002).

Similarly, outlier detection is the task to discover obser-
vations that lie an abnormal distance from other values in a
population. That is, outliers are the unusual observations (or
bad data points) that are far removed from the mass of data
(Aggarwal and Yu 2001; Barnett and Lewis 1994). Conse-
quently, filtering out the detected outliers are very useful for
obtaining good mining results (Knorr et al. 2000). Therefore,
in the data mining perspective, the aim of instance selection
is similar to the one of outlier detection (Liu and Motoda
2001).

In this paper, a novel instance selection method, namely
genetic-based biological algorithm (GBA), is proposed. GBA
simulates the biological evolution process and rules from
nature where, after long-term evolution, organisms find the
most efficient way to allocate resources and evolve (Ball
2002). Inspired by nature, GBA is constructed as efficient
and effective problem solving for instance selection.

The major contribution of this paper is to introduce a novel
evolutionary-based instance selection algorithm, i.e., GBA. It
is the first approach to extend the genetic algorithm based on
biological evolution. Moreover, GBA is assessed over a large-
scale experiment based on 50 different domain problems and
is compared with five well-known and representative instance
selection algorithms. Experimental results demonstrate that
GBA outperforms the other methods, which can provide the
lowest classification error, the least storage requirement, and
moderate time complexity.

The rest of this paper is organized as follows: Sect. 2 pro-
vides a brief review of related literatures, including the con-
cept of instance selection and several well-known instance
selection algorithms, such as ENN, IB3, DROP3, ICF, GA,
and CCIS. The proposed GBA method for instance selection
is introduced in Sect. 3. In Sect. 4, the experimental results
based on 50 UCI datasets containing various domain prob-
lems are present. Finally, conclusions are given in Sect. 5.

2 Instance selection

Instance selection can be defined as follows: Given a dataset
D composed of training set T and testing set U , let Xi

be the i-th instance in D, where Xi = (X1, X2, . . . , Xm)

which contains m different features. Let S ⊂ T be the subset
of selected instances that resulted from the execution of an
instance selection algorithm. Then, U is used to test a classi-
fication technique trained by S (Cano et al. 2003; Derrac et
al. 2010).

In the literature, there are a number of related studies
proposing instance selection methods for obtaining better
mining quality. Specifically, Pradhan and Wu (1999) and
Jankowski and Grochowski (2004) surveyed several rele-

vant selection techniques, which can be divided into three
application-type groups: noise filters, condensation algo-
rithms, and prototype searching algorithms. In addition,
extensive comparative experiments were conducted by Wil-
son and Martinez (2000) and Brighton and Mellish (2002).
They indicate that iterative case filtering (ICF) and decre-
mental reduction optimization procedure 3 (DROP3) are
the cutting-edge instance selection algorithms, which make
the k-NN classifier provide better performances over other
instance selection methods. Four well-known instance selec-
tion algorithms are overviewed as follows: ENN, IB3, ICF,
and DROP3. Moreover, a description of genetic based algo-
rithms is also included.

2.1 ENN

Edited nearest neighbor (ENN) (Wilson 1972) is a represen-
tative noise-filtering algorithm, in which S starts out the same
as T , and then each instance in S is removed if it does not
agree with the majority of its k nearest neighbor (with k = 3,
typically). This edits out noisy instances, as well as close
border cases, leaving smoother decision boundaries.

Repeated edited nearest neighbor (RENN) (Wilson 1972),
an extension of ENN, applies the ENN algorithm repeatedly
until all instances remaining have a majority of their neigh-
bors with the same class, which continues to widen the gap
between classes and smoothes the decision boundary as long
as any changes are made in the selected set.

2.2 IB3

IB3 was introduced by Aha et al. (1991), which is based on an
acceptable instance concept to carry out the selection. In Aha
et al. (1991), IB1, IB2, and IB3 were compared with the C4
decision tree algorithm (Quinlan 1986) over six datasets. In
particular, the sizes of the chosen datasets range from 303 to
800 data samples and the numbers of attributes of each data
sample range from 7 to 21. The results show that IB3 can
significantly reduce IB1’s storage requirements and does not
display IB2’s sensitivity to noise. On average, IB3 allows k-
NN to provide a higher range of classification accuracy than
C4.5. However, they found that IB3’s learning performance
is highly sensitive to the number of irrelevant attributes used
to describe instances.

2.3 DROP3

The decremental reduction optimization procedure 3
(DROP3) was proposed by Wilson and Martinez (2000). In
Wilson and Martinez (2000), a number of different algo-
rithms were compared, including ENN, IB3, and DROP
series. In addition, 30 datasets collected from UCI Machine

123

Instance selection by genetic-based biological algorithm

Learning Repository1 were used for their study. In particular,
the sizes of the chosen datasets range from 101 to 8124 data
samples and the numbers of attributes of each data sample
range from 4 to 75, which are slightly larger than Aha et al.
(1991). Their results show that DROP3 had higher average
accuracy than IB3 and had the best mix of storage reduction
and generalization accuracy.

2.4 ICF

Iterative case filtering (ICF), proposed by Brighton and
Mellish (2002), uses the ENN algorithm to remove the noise
from the training set. Then, in the second step, ICF removes
each instance x for which the reachability(x) is bigger than
the coverage(x). This procedure is repeated for each instance
in T . After that, ICF recalculates the reachability and cov-
erage properties and restarts the second step (as long as any
progress is observed).

In Brighton and Mellish (2002), ICF was examined and
compared with various instance selection algorithms, includ-
ing ENN and IB3, in terms of classification accuracy. The
same 30 datasets used in Wilson and Martinez (2000) were
chosen in their study. They found that ICF can achieve the
highest degree of instance set reduction as well as the reten-
tion of classification accuracy. More specifically, an average
of 80 % of cases were removed and classification accuracy
did not drop significantly.

2.5 Genetic algorithms

Evolutionary or genetic algorithms (GA) have become an
effective instance selection approach to improve the perfor-
mance of data mining algorithms (Derrac et al. 2010). In
GA, a population of strings (called chromosomes), which
encode candidate solutions (called individuals) to an opti-
mization problem, evolves for better solutions. In general,
the genetic information (i.e., chromosome) is represented by
a bit string (such as binary strings of 0s and 1s) and sets of bits
encode the solution. Then, genetic operators are applied to
the individuals of the population for the next generation (i.e.,
a new population of individuals). There are two main genetic
operators, which are crossover and mutation. Crossover cre-
ates two offspring strings from two parent strings copying
selected bits from each parent. On the other hand, mutation
randomly changes the value of a single bit (with small prob-
ability) to the bit strings. Furthermore, a fitness function is
used to measure the quality of an individual to increase the
probability that the single bit can survive throughout the evo-
lutionary process.

Instance selection is a type of NP-hard problems (Guy-
onm 2003). However, related works have demonstrated that

1 http://archive.ics.uci.edu/ml/.

heuristic algorithms can provide reasonably well results over
such problem (Cano et al. 2003; García-Pedrajas et al. 2010;
Jing 2013). In addition, the fitness function makes the heuris-
tic algorithms more flexibility because the fitness function
can be specialized for different requirements. For instance,
the chosen reduction rate of heuristic algorithms is depen-
dent on the fitness function used. On the other hand, since a
classifier-based evaluator is used in the heuristic algorithms,
they can provide higher accuracy than other algorithms based
on non-supervised learning-based evaluator.

In Cano et al. (2003), GA has shown that it can obtain
better results than many traditional and non-evolutionary
instance selection methods in terms of better instance selec-
tion rates and higher classification accuracy. On the other
hand, Li and Jacob (2008) propose an adaptive sampling pro-
cedure using GA and its performance is assessed over three
real-word and very large datasets. The results show that their
proposed approach outperforms existing methods in classi-
fication, association rules, and summary statistics.

García-Pedrajas et al. (2010) introduce a cooperative evo-
lutionary approach for instance selection, namely coopera-
tive co-evolutionary instance selection (CCIS). It is based
on two separate populations that evolve cooperatively in a
divide and conquer manner. In particular, the training set is
divided into several subsets that are searched independently.
A population of global solutions relates the search in different
subsets and keeps track of the best combinations obtained.

This approach is compared with three well-known algo-
rithms, which are IB3, DROP3, and ICF, and a genetic algo-
rithm over 50 datasets from the UCI Machine Learning
Repository. The results show that CCIS is very effective both
in terms of improving performance and in reducing compu-
tational cost.

Recently, Jing (2013) proposed a hybrid genetic algorithm
for the feature selection problem. The results indicate that the
heuristic algorithms are suitable for solving the data reduc-
tion problem including instance and feature selection. How-
ever, although instance selection can be approached by the
heuristic algorithms, the hybrid genetic algorithm (2013) is
not considered in this paper. This is because the feature and
instance selection problems are somewhat different due to
the fitness function, specific limitations, and conditions.

3 Genetic-based biological algorithm

3.1 The basic concept

In the previous section, the concept of genetic algorithms, or
GAs, originally proposed by Holland (1992), was introduced.
While GAs have demonstrated success for a diverse set of
problem, genetic algorithms are only able to handle simple
concepts. Basically, the idea is that if resources are limited,

123

http://archive.ics.uci.edu/ml/

Z.-Y. Chen et al.

the “organisms” will follow the most reasonable and simplest
rules—allowing for a more effective use of resources, or the
“reproduction of species” (Odum 1994; Ball 2002). Thus,
by using simple rules, organisms that maximize the “savings
cost” will be more efficient. While reasonable rules help with
this approach, if we can fit a “biological evolution” into the
evolutionary process, where the most streamlined process
also complies with the reasonable rules, we will closely sim-
ulate the natural evolution of an algorithm, and the algorithm
will be both efficient and effective.

In other words, the algorithm only pursues the simplest
evolutionary process. While in general this is reasonable, as
it is able to solve problems fairly efficiently, it does discard a
number of other elements to pursue the efficiency in the evo-
lutionary process. This could result in a performance degra-
dation and could also cause it to fall into the local optimal
solution. So, to counteract this effect, we will factor in four
other key factors that can be found in evolution: “reason-
able convergence”, “inter-generational mating”, “nonlinear
adaptability” and “mass migration”. These are detailed in
the following sections.

3.2 Specific features of GBA

3.2.1 Reasonable convergence

In the process of evolution, creatures are not only mating
within their population, but they are also mating with other
populations. This is a hybrid concept. Inevitably, the two
parent populations have lived in different environments, and
the hybrid population will live in the environment of one
or both of the parent populations. Thus, the hybrid popula-
tion will not have the collection of alleles that are the most
advantageous for either of those environments; a substantial
loss of fitness, i.e., their likelihood of successfully reproduc-
ing is lessened. Therefore, hybrids of different populations
have better performance than the purebred of their parents
in the growth rate, fecundity, and adaptability. In order to
maintain the racial differences to produce hybrid popula-
tions, organisms must have some differences. Existing stud-
ies have pointed out that reducing the gene pools of vari-
ous wild and indigenous breeds result in the loss of genetic
diversity (Pollan 2001). Since the indigenous breeds are often
better adapted to local extremes in climate and have immu-
nity to local pathogens, this represents a significant genetic
erosion of the gene pool for future breeding (Pollan 2001;
Ellstrand 2003). Therefore, to achieve continuous evolution
of the organism, we must maintain the diversity of the gene
pool and use natural evolution to find out the most viable
species, rather than the local best species.

Due to the limitations of the algorithm (small population
numbers), we were unable to provide exotic species to do
interbreeding. While increasing the mutation rate will allow

us to achieve this concept, in a traditional GA, if the mutation
rate is too high, it often leads to a low efficiency for solving
the process (similar to random search), and if mutation rate
is too low (loss of genetic diversity), it will cause the algo-
rithm to fall into the local optimal solution, and thus cannot
effectively escape local optimal. It is difficult to effectively
escape local optimal solution. In a biosphere, for example, it
is unreasonable to take a long time to escape the local opti-
mum. Therefore, our plan is to have algorithms with a high
mutation rate that can also converge effectively. While in a
traditional GA this would probably be unreasonable, we will
use both “inter-generational mating” and “mass migration”
to achieve this goal.

3.2.2 King of the genetics: inter-generational mating

We observed that certain organisms usually have a group of
animals, the king of the spouse, in this group; the spouse’s
age is not the same as the king. As a result of the evolution-
ary mating process, the distribution of power does not solely
rest with the younger individuals and should depend on the
strength of the individuals. For example, in the lion species,
even if the lion is older, if he is the strongest, he will be the
king. However, age does affect the ability of organisms. In
other words, only a few of the very powerful kings are able
to do inter-generational mating. For example, old lions that
are strong will have a longer mating capability. Most exist-
ing genetic algorithms use this concept of new-generational
mating, but our GBA retains a small part of the previous
generation plus the most powerful individuals from the new
generation, allowing these kings to continue to compete with
the new generation.

3.2.3 Nonlinear adaptability

The phenomenon of protecting vulnerable groups does not
appear in the natural world. The “law of the jungle” and the
“survival of the fittest” have always been the most authentic
expression of nature. For instance, if a newborn deer cannot
stand up in a short time, it will face elimination, as it will eas-
ily be eaten by wolves, tigers, or other animals. In this case,
it will accelerate the elimination of the organism which has
a lower adaptability, leaving surviving organisms with more
resources (e.g., more food, fewer competitors, etc.) to breed
their next generations. Consequently, we can see that the nat-
ural world does not waste time on these organisms which have
a lower adaptability, because it not only cannot help the over-
all evolution (the next generations may not be better), but also
reduces the resources of other organisms, which may even
lead to an overall evolution with low efficiency. Under the
conditions of limited resources, this situation is inevitable.

When a problem has a very large number of combinations
as feasible solutions, the fitness value of all combinations

123

Instance selection by genetic-based biological algorithm

Fig. 1 Nonlinear and linear adaptability

will be close to linear, as shown in Fig. 1a. In contrast, Fig.
1b shows the worst case which, unfortunately, is the fitness
curves of many practical problems. This is inconsistent with
the natural law, because when the adaptability (fitness value)
of organisms is below a certain threshold (the dashed line in
the middle of Fig. 1c), these organisms will have little access
to subsistence. In the natural world, the curve of the fitness
should be as shown in Fig. 1c. Particularly, each curve can be
regarded as a membership function of the fitness, in which
the input of the membership function is the original fitness
value, whereas the output is the weighted fitness value. In Fig.
1, the x axis represents the original fitness value (between 0
� 100), and the y axis is the weighted fitness value (between
0 � 1). For the example of Fig. 1c, if the original fitness is
62, then the weighted fitness will be 0.832.

While organisms with low resilience may also provide a
few good genes (if the individual has a lot of good genes, it
will have a higher adaptability), when the resources available
to the organisms have a higher adaptability to do mutation
or fine-tuning, it will have a greater benefit than the lower
ones. This is where existing algorithms should be improved.
We use the following steps to adjust the fitness fi to fit the
natural law of evolution and thus improve the efficiency of
our algorithm. The process of the nonlinear adaptability can
be defined as follows:

f is the fitness matrix,
N is the population size,
Ori is the organism in the population.

Step 1 Use the fitness function (1) to calculate the fitness
value fi

fi = Fitness function (Ori), i = 1, 2, . . . N (1)

Step 2 Use Eq. (2) to normalize the fitness fi to fall in [0, 1].

Noi = Fi − Min(F) × (1 − 0)

Max(F) − Min(F)
, i = 1, 2, . . . , p (2)

Step 3 Put the normalized fitness Noi into Eq. (3) to obtain
the corresponding nonlinear adaptability Noni .

Noni=
Hyperbolic_tangent(Noi−0.5

σ 2)+1

2
, i =1, 2, . . . , N

(3)

We use the hyperbolic tangent function as the mapping model
for the nonlinear adaptability. In our approach, the parameter
σ is set as 0.4 (reasonable distribution and the best results),
resulting in the mapping model shown in Fig. 1c.

Unlike the non-conversion approach, after conversion,
organisms with low adaptability will have a lower mating
rate, and organisms with a high adaptability will have a higher
mating rate.

3.2.4 Great migration

Prior research has shown that, when a population has the
following conditions: (1) large population size, (2) random
mating, (3) no natural selection or mutation, (4) no great
migration and (5) alleles (genome length) are the same, it will
make the allele frequency remain a constant and the geno-
typic frequency is maintained at a certain level (Stern 1962;
Emigh 1980). This is known in population genetics as the
“Hardy–Weinberg law” or “Hardy–Weinberg equilibrium”,
and can be stated as follows:

(p + q)2 = 1 or p2 + 2pq + q2 = 1, (4)

where p is the dominant gene and q is the recessive gene.
When one considers the status of the three genes, then the
formula becomes (p + q + r)2 = 1.

Accordingly, even the properties “most rare form” or “may
disappear” of the gene can continue to survive. This phenom-
enon appears to ensure that the rate of evolution of genes is
equal, but because the genes have not changed, this means
that the evolutionary rate is 0 (non evolution) (Stern 1962).
But, in the natural world, the evolution rate is not 0. Because
of resource constraints (population size, food, territory size,
etc.), it will retain the organisms which have a higher adapt-
ability. As a result, organisms cannot randomly perform mat-
ing, but they can mutate and migrate, also known as the great
migration.

123

Z.-Y. Chen et al.

However, while the traditional GA algorithm has most of
its processes in line with natural laws, the great migration is
not taken into account. Consequently, we will implement a
great migration to improve the effectiveness and efficiency
of GA algorithms.

Prior research has demonstrated that some great migration
can produce more species, while several species have a much
better adaptability than without migration, and some of them
are even extinct (Flynn and Wyss 1998; Koepfli et al. 2007;
Morgan 2002). This demonstrates that the great migration is
necessary, as it helps to improve biological diversity (give a
stable gene pool the opportunity to do hybridization between
two populations) and survival rates (hybrid offspring will be
better). Accordingly, we will modify the processes and con-
ditions of great migration to improve algorithm performance:

1. Great migration is not frequent (when the whole gene pool
tends to be stable).

2. Great migration will divide the population into two parts:

• Foreign population: the higher adaptability can make
the organism overcome the great migration. (Retain
“K ” organism as the foreign population, and do not
have any change.)

• Local population: through a high mutation rate to
change “M” individuals where these individuals will
be treated as other ethnic groups (achieve the gene
diversity).

3. Use the foreign and local population to continue the evo-
lution process.

3.2.5 GBA algorithm

The pseudo code of GBA is described below (Fig. 2), using
the following definitions:

Pop is the population
N is the population size
Ori is the organism
fi is the fitness value of each organism
Noni is the non-linear fitness value
King is the kings of a generation
K is the size of KING (K < N)

MP is the mating pool
M P Om ∈ M P, m = 1, 2, . . . , M
M is the size of MP (M = N − K)

fi ∈ F, i = 1, 2, . . . , N
Ori ∈ P O P, i = 1, 2, . . . , N
K Ok ∈ K ing, k = 1, 2, . . . , K
GF is the best fitness of each generation
G is the threshold of great migration
NG is the new generation.

3.2.6 The differences between GA and GBA

Table 1 summarizes the primary differences between the
GBA and a traditional GA.

In Table 1, the fitness value of the GBA is mapped to
a nonlinear model which enables us to achieve nonlinearly
adaptability. It is different from the traditional linear adapt-
ability that can accelerate the evolution process and remove
the poor individuals, as it provides more mating opportuni-
ties for the high-end individuals. Since it incorporates the
concept of intergenerational mating, GBA just needs to cal-
culate the fitness for each newborn individual, rather than the
entire population (because there are always a small number
of individuals from the previous generation). In the new gen-
eration process of GBA, it joins the n-kings and the newborn
individuals to form the next generation. Therefore, in the mat-
ing process of GBA, n-kings have the opportunity to mate
with the new generation; even when the high mutation rate
means that there is no individual similar to the kings, their
genes have the opportunity to be passed down. Consequently,
the n-kings will have more opportunities for fine-tuning and
evolution.

4 Experiments

4.1 Experimental setup

In this paper, 50 different domain datasets from the UCI
Machine Learning Repository were selected for the experi-
ments. In addition, five state-of-the-art algorithms including
IB3, ICF, DROP3, GA (Cano et al. 2003), and CCIS with ten
subpopulations (García-Pedrajas et al. 2010) are compared
with our proposed GBA approach.

Moreover, tenfold cross validation was used to divide each
dataset into ten non-duplicated and approximately equal sub-
sets. Nine subsets are used during classifier training and the
remaining subset is used for classifier testing. As a result, the
classifier is learned ten times and the classification perfor-
mance is the average error over the ten subsets. More specif-
ically, the k-NN (k = 1) classifier was considered since 1-NN
can provide reasonable classification performances in most
applications (Jain et al. 2000) and all related studies used it
as the baseline classifier.

Finally, to assess the performance of these instance selec-
tion methods, the classification error, storage reduction, and
the time spent by performing instance selection are exam-
ined.2

2 The experimental environments are as follows: CPU: Intel(R)
Core(TM) i7-3770 @ 3.40 GHz, RAN: 32 GB, OS: Windows 7–64bit,
Code: Matlab R2012a.

123

Instance selection by genetic-based biological algorithm

Fig. 2 The pseudo code of
GBA

1. Initialize population

Randomly generate N-organisms Ori to compose the population POP

Create a empty set of king King

For i=1,2,…N

POP Ori

End

Ø= King

2. Evaluate each organism of a new generation

Calculate the fitness fi for each organism, and then convert it to the non-linear fitness

Noni

For i=1,2,…N

fi Ori)

pi
FMinFMax

FMinF
No i

i ,...2,1,
)()(

)01()(
=

−
−×−

=

Ni

NO
gentHyperbolic

Non

i

i ,...2,1,
2

1)
5.0

(tan_
2

=
+

−

= σ

End

3. Inter-generational mating

Randomly select K Kings from POP based on nonlinear fitness Noni to compose the

kings King

For k=1,2,…K

King ect the king KOk from POP based on nonlinear fitness Noni

End

4. Selection

Randomly select M-organism Orm from population POP in to the mating pool MP based

on nonlinear fitness Noni

For m=1,2,…M

MP Orm from POP based on nonlinear fitness Noni

End

5. Mating

Crossover for each pair of the mating pool MP to generate the New Generation NG

For m=1,2,…(M/2)

NG the MPOm and MPO(m+M/2)

End

6. Mutation

Randomly mutation for each organism MPOm of the mating pool MP

For m=1,2,…M

MPOm = Random Mutation the MPOm

End

7. Great migration

If the best fitness value is stable then apply the great migration

If there is no change in the best fitness GF in G continuous generations then

Do a strong mutation for the new generation NG (Local population)

End

8. New generation

If great migration is not applied in this generation then

Combine the Kings King and the new generation NG to replace the existing

population

Pop King NG

else

Combine the foreign population (King) and the local population (strong mutation

NG)

end

9. If Stop conditions are met then stop else return to step 2.

123

Z.-Y. Chen et al.

Table 1 The differences between GA and GBA

Process Traditional GA GBA

Evaluation Reckoning of a fitness value for each gene in this
generation

Reckoning of a nonlinear fitness value for each gene in new
generation

Select kings – Find out the kings of this generation

Mating Select, crossover and mutation (just only new
generation)

(Inter-generational mating) select, crossover and mutation (new
generation and kings of the last generation)

Mass migration – Mass migration

New generation Population: a whole new generation Combine the new generation and the kings of the last generation

4.2 Classification error

Table 2 shows the classification error of 1-NN with instance
selection by IB3, DROP3, ICF, GA, CCIS, and GBA
and 1-NN without instance selection, respectively. Note
that the underlined error rates mean the best instance
selection results and ‘*’ followed by the underlined error
rates represent that 1-NN with instance selection per-
forms better than the baseline 1-NN without instance
selection.

As shown, on average the proposed GBA approach per-
forms best, which allows 1-NN to provide lower error rates
than 1-NN with the state-of-the-art algorithms individually.
Particularly, 1-NN by GBA outperforms 1-NN by the other
instance selection methods over 27 datasets. In addition, 1-
NN with GBA performs better than the baseline over four
datasets.

Moreover, GBA outperforms the other methods when the
number of data samples is from medium to large. These
datasets are ‘Abalone’ (4,177), ‘Hypothyroid’ (3,772), ‘Kr
vs. kp’ (3,196), ‘Optdigits’ (5,620), ‘Page_blocks’ (5,473),
‘Pendigits’ (10,993), ‘Phoneme’ (5,404), ‘Satimage’ (6,435),
‘Segment’ (2,310), ‘Sick’ (3,772), ‘Texture’ (5,500), and
‘Waveform’ (5,000).

However, for those datasets composed of high-dimensio-
nal data (i.e., over 50 dimensions) including ‘Audiology’
(69), ‘Gene’ (60), ‘Lrs’ (101), ‘Optdigits’ (64), ‘Promot-
ers’ (57), and ‘Sonar’ (60), all of these instance selection
algorithms cannot perform very well over all of these kinds
of datasets. When we compare the evolutionary-based algo-
rithms (i.e., GA, CCIS, and GBA), only GBA performs well
over the ‘Optdigits’ dataset. This reveals one major limitation
of current instance selection methods for high-dimensional
datasets, which can be considered as the future research
direction.

On the other hand, there are ten datasets belonging to 10-
class classification problems or more, GBA outperforms the
other methods. To compare these three evolutionary-based
algorithms (i.e., GA, CCIS, and GBA), GBA can make 1-
NN provide the lowest error rates over five datasets out of
the ten including ‘Abalone’ (29), ‘Opdigits’ (10), ‘Pendigits’
(10), ‘Texture’ (11), and ‘Vowel’ (11). CCIS and GA are

only good with the ‘Soybean’ (19) and ‘Yeast’ (10) datasets,
respectively.

4.3 Storage requirement

Table 3 shows the storage reductions achieved by IB3,
DORP3, ICF, GA, CCIS, and GBA. Note that 1 means there
was no data reduction, and 100 % of the storage space is
needed. These results show that on average GBA can filter
out the largest number of instances, which requires the least
storage space. Particularly, CCIS and GBA perform best over
24 and 21 datasets, respectively.

For the 12 datasets containing medium to large numbers of
data samples, GBA performs best over eight datasets, includ-
ing ‘Abalone’ (4,177), ‘Optdigits’ (5,620), ‘Page_blocks’
(5,473), ‘Pendigits’ (10,993), ‘Phoneme’ (5,404), ‘Sick’
(3,772), ‘Texture’ (5,500), and ‘Waveform’ (5,000).

For the six datasets composed of high-dimensional data
(i.e., over 50 dimensions), GBA performs best over the
‘Gene’ (60) and ‘Optdigits’ (64) datasets and CCIS for ‘Audi-
ology’ (69), ‘Gene’ (60), and ‘Lrs’ (101) and GA for ‘Sonar’
(60). This again indicates that it is a hard problem for instance
selection over high-dimensional datasets.

On the other hand, for the ten datasets belonging to
10-class classification problems or more, only GBA and
CCIS can provide the largest dataset reduction, in which
GBA performs well over seven datasets including ‘Abalone’
(29), ‘Opdigits’ (10), ‘Pendigits’ (10), ‘Primary_tumor’
(22), ‘Soybean’ (19), ‘Texture’ (11), and ‘Vowel’ (11) and
CCIS for ‘Audiology’ (24), ‘Lrs’ (10), ‘Vowel’ (11), and
‘Yeast’ (10).

If we examine the lowest error rate versus the least stor-
age requirement by GBA and CCIS, the finding is interest-
ing that using GBA can not only reduce the dataset sizes the
most but also allow 1-NN to provide the lowest error rates
over 12 datasets including ‘Abalone’, ‘Card’, ‘Dermatology’,
‘Optdigits’, ‘Page_blocks’, ‘Pendigits’, ‘Phoneme’, Pima’,
‘Sick’, ‘texture’, ‘Vowel’, and ‘Waveform’. On the other
hand, CCIS only exhibits this characteristic over three data-
sets including ‘GERMAN’, ‘Heart’, and ‘Post_operative’.
Overall, these results demonstrate the superiority of GBA
over the state-of-the-art algorithms.

123

Instance selection by genetic-based biological algorithm

Table 2 Classification error of
IB3, DORP3, ICF, GA, CCIS,
and GBA

Dataset IB3 DROP3 ICF GA (CHC) CCIS GBA 1-NN

Abalone 0.835 0.7995 0.8072 0.8554 0.8321 0.7738 0.8034

Anneal 0.3326 0.1551 0.1831 0.2056 0.2023 0.2748 0.0157

Audiology 0.5046 0.6046 0.6091 0.6046 0.5182 0.7503 0.3273

Autos 0.475 0.515 0.56 0.47 0.455 0.5229 0.33

Balance 0.4129 0.292 0.3145 0.2903 0.2371 0.2112 0.2226

Breast-cancer 0.5107 0.3429 0.4214 0.3964 0.3 0.3939 0.3714

Cancer 0.1957 0.1348 0.158 0.1565 0.113 0.0590 0.0479

Card 0.3594 0.3174 0.3116 0.3551 0.2652 0.1648* 0.2174

Dermatology 0.2612 0.1167 0.2889 0.1972 0.1389 0.1097 0.0472

Ecoli 0.4515 0.2727 0.3091 0.3424 0.2757 0.2274 0.206

Gene 0.4025 0.3552 0.4104 0.4025 0.4117 0.3910 0.2647

German 0.439 0.359 0.408 0.383 0.335 0.3770 0.312

Glass 0.4571 0.4048 0.481 0.4286 0.381 0.3015 0.2952

Glass-g2 0.2938 0.2938 0.3563 0.3563 0.3063 0.4198 0.2

Heart 0.3296 0.2889 0.3259 0.3185 0.2296* 0.2296* 0.2333

Heart-c 0.3533 0.29 0.29 0.27 0.2467 0.2920 0.24

Hepatitis 0.3533 0.2067 0.2534 0.24 0.24 0.4899 0.1933

Horse 0.525 0.4194 0.4167 0.4556 0.4472 0.5761 0.3667

Hypothyroid 0.543 0.1833 0.2268 0.2316 0.2456 0.0747 0.0692

Ionosphere 0.32 0.2686 0.2829 0.2829 0.2286 0.2105 0.1314

Iris 0.2667 0.12 0.1533 0.2133 0.1533 0.1067 0.0467

Kr vs. Kp 0.2762 0.2022 0.2204 0.2423 0.2677 0.1774 0.0828

Labor 0.26 0.24 0.32 0.4 0.34 0.3217 0.06

Led24 0.63 0.555 0.615 0.65 0.635 0.6786 0.535

Liver 0.4823 0.4235 0.4324 0.4274 0.4177 0.3708* 0.3794

Lrs 0.4359 0.2491 0.2717 0.3302 0.2302 0.2782 0.1887

Lymphography 0.4643 0.3214 0.3 0.3357 0.3357 0.3974 0.1929

New-thyroid 0.219 0.0952 0.1238 0.1619 0.0429 0.1192 0.0333

Optdigits 0.3338 0.1505 0.208 0.2153 0.2139 0.0538 0.0256

Page-blocks 0.4731 0.1468 0.1658 0.2108 0.223 0.0732 0.0362

Pendigits 0.3155 0.1211 0.1468 0.1865 0.1877 0.0514 0.0066

Phoneme 0.2965 0.2267 0.2622 0.2561 0.2624 0.1717 0.0952

Pima 0.3882 0.3263 0.3487 0.3592 0.3039 0.3073 0.3013

Post-operative 0.6778 0.5111 0.4889 0.3778 0.3444 0.4658 0.4889

Primary-tumor 0.7515 0.6667 0.6819 0.7212 0.7394 0.7015 0.6515

Promoters 0.29 0.27 0.26 0.26 0.41 0.3675 0.25

Satimage 0.3417 0.204 0.2417 0.2603 0.2628 0.1402 0.0927

Segment 0.2857 0.1563 0.1861 0.2125 0.2204 0.1281 0.0355

Sick 0.3769 0.1722 0.1899 0.218 0.2008 0.0863 0.043

Snoar 0.31 0.32 0.44 0.415 0.335 0.3321 0.155

Soybean 0.3941 0.2485 0.2794 0.3191 0.2338 0.2819 0.0779

Texture 0.3131 0.1302 0.1604 0.1977 0.2029 0.0682 0.0105

Tic-tac-toe 0.2242 0.1221 0.1547 0.1979 0.2063 0.3102 0.0779

Vehicle 0.4417 0.3714 0.4203 0.4274 0.4072 0.4374 0.2929

Vote 0.2721 0.2139 0.2442 0.2302 0.186 0.1150 0.0675

Vowel 0.4889 0.405 0.4374 0.5041 0.504 0.2828* 0.2919

Waveform 0.4168 0.3488 0.3826 0.3902 0.393 0.2616 0.286

123

Z.-Y. Chen et al.

Table 2 continued
Dataset IB3 DROP3 ICF GA (CHC) CCIS GBA 1-NN

Wine 0.2588 0.147 0.1529 0.2 0.1412 0.0746 0.0353

Yeast 0.6128 0.5209 0.5473 0.33 0.5061 0.5044 0.4689

Zoo 0.22 0.2 0.2 0.33 0.15 0.1280 0.06

Average 0.3975 (6) 0.2961 (2) 0.329 (4) 0.3365 (5) 0.3093 (3) 0.2929 (1) 0.2053

Table 3 Storage reduction by
IB3, DORP3, ICF, GA, CCIS,
and GBA

Dataset IB3 DROP3 ICF GA (CHC) CCIS GBA

Abalone 0.8222 0.2529 0.1839 0.4904 0.4472 0.1326

Anneal 0.2438 0.1271 0.1314 0.0831 0.126 0.0832

Audiology 0.5931 0.2917 0.1397 0.2333 0.101 0.1238

Autos 0.486 0.3935 0.2184 0.2189 0.1043 0.1029

Balance 0.3222 0.2236 0.1732 0.0704 0.0245 0.1274

Breast-cancer 0.202 0.262 0.1818 0.1163 0.0209 0.0200

Cancer 0.0862 0.0643 0.0435 0.0964 0.0095 0.0097

Card 0.1926 0.2811 0.1736 0.1142 0.0205 0.0204

Dermatology 0.2976 0.1467 0.073 0.0891 0.0403 0.0401

Ecoli 0.4184 0.165 0.0904 0.1165 0.0416 0.0426

Gene 0.3518 0.3842 0.2223 0.471 0.1738 0.1738

German 0.2079 0.31 0.1361 0.0826 0.0183 0.1444

Glass 0.4182 0.3145 0.1446 0.1254 0.0829 0.1276

Glass-g2 0.2238 0.334 0.1531 0.1211 0.0571 0.0541

Heart 0.1786 0.2407 0.1304 0.1054 0.028 0.0288

Heart-c 0.2048 0.2397 0.1552 0.0662 0.0268 0.0261

Hepatitis 0.1393 0.175 0.0936 0.1079 0.0322 0.0411

Horse 0.2875 0.2226 0.1326 0.1083 0.0277 0.0264

Hypothyroid 0.1882 0.0393 0.0271 0.2764 0.0776 0.0272

Ionosphere 0.174 0.1592 0.037 0.0877 0.0376 0.1388

Iris 0.243 0.1659 0.1222 0.0993 0.0392 0.0963

Kr vs. Kp 0.2219 0.2514 0.2306 0.2306 0.1371 0.1372

Labor 0.2019 0.3481 0.1269 0.1423 0.0885 0.0909

Led24 0.7084 0.4167 0.2917 0.2128 0.0895 0.0870

Liver 0.2061 0.4357 0.2164 0.1031 0.0428 0.1029

Lrs 0.4226 0.1555 0.0826 0.1086 0.037 0.0373

Lymphography 0.3433 0.309 0.1537 0.1515 0.0574 0.0597

New-thyroid 0.1995 0.1278 0.0706 0.1665 0.0356 0.0361

Optdigits 0.3222 0.0982 0.0558 0.4818 0.3237 0.0557

Page-blocks 0.2087 0.0456 0.0268 0.32 0.0869 0.0268

Pendigits 0.3052 0.054 0.033 0.4985 0.4067 0.0326

Phoneme 0.1533 0.1983 0.1229 0.3142 0.3293 0.1229

Pima 0.1789 0.2552 0.1406 0.103 0.0173 0.0173

Post-operative 0.2198 0.2605 0.2296 0.1667 0.0197 0.0506

Primary-tumor 0.7448 0.2794 0.2213 0.2206 0.3565 0.0772

Promoters 0.2146 0.4458 0.2917 0.225 0.2198 0.2188

Satimage 0.3258 0.1306 0.0613 0.4962 0.118 0.0851

Segment 0.2913 0.1348 0.0957 0.085 0.1362 0.1347

Sick 0.1163 0.0801 0.0541 0.3363 0.0815 0.0540

Snoar 0.1984 0.3431 0.1362 0.084 0.0516 0.1383

123

Instance selection by genetic-based biological algorithm

Table 3 continued
Dataset IB3 DROP3 ICF GA (CHC) CCIS GBA

Soybean 0.3665 0.1917 0.1903 0.1062 0.0636 0.0190

Texture 0.3193 0.0973 0.0649 0.4231 0.3217 0.0648

Tic-tac-toe 0.1751 0.2564 0.2672 0.082 0.0348 0.0348

Vehicle 0.3788 0.3215 0.2034 0.1031 0.0493 0.0497

Vote 0.1263 0.1281 0.0947 0.1332 0.0189 0.0190

Vowel 0.3596 0.4112 0.2844 0.1945 0.1223 0.1223

Waveform 0.3563 0.2736 0.1155 0.4487 0.3598 0.1155

Wine 0.2311 0.1721 0.0932 0.1006 0.0367 0.0988

Yeast 0.5559 0.2942 0.1611 0.1407 0.0252 0.0747

Zoo 0.3385 0.2341 0.3033 0.1407 0.0879 0.1398

Average 0.3014 (6) 0.2309 (5) 0.1437 (3) 0.192 (4) 0.1059 (2) 0.0778 (1)

4.4 Time complexity

4.4.1 Computational complexity

Here, we provide a comparison of three algorithms (i.e., GA,
CCIS, and GBA) in Big O notion. For the fitness function of
each algorithm, the k-NN classifier is used (k = 1). Therefore,
the complexity of each method is as follows:

GA :O(NPop × I ter × C FC(D))

CCIS :O((NPop + MPop) × I ter × C FC(D))

GBA :O((NPop − E) × I ter × C EC(D)),

where Npop is the population size, Iter represents the total
iteration times, and C FC(D) is the classifier complexity with
D instances. The CCIS method has an additional pool for elite
individuals, and the size of the elite pool is Mpop. However,
there is no additional pool of the elite mechanism in GBA
since the repeated assessment for the E elite individuals is
not necessary in GBA.

4.4.2 Comparison to related works

Besides the Big O analysis, the following experiments pro-
vide some quantitative results of comparing GA, CCIS, and
GBA in terms of time efficiency. However, it should be noted
that the results can only be regarded as an indirect compari-
son since the computing equipment used in these works are
different.

Figure 3 summarizes the average time (seconds) spent by
GA (Cano et al. 2003) and GBA. Clearly, GBA takes slightly
longer time than GA over most datasets, i.e., 200 vs. 57 s. Fur-
thermore, according to García-Pedrajas et al. (2010) CCIS
needs about 1,000 s more than GA over the same 50 datasets.
Therefore, we can say that on average GA, CCIS, and GBA
require about 1, 16.7, and 3.33 min to perform instance selec-
tion, respectively.

It should be noted that García-Pedrajas et al. (2010) does
not provide the information of the experimental environ-
ment. Therefore, it may be difficult to directly compare these
algorithms. However, CCIS is a distributed-based algorithm
whereas GBA and GA are not. Therefore, the distributed
characteristic of CCIS should allow it to perform the instance
selection task more efficiently than GBA and GA. In other
words, the results indicate that the time spent by GBA is
reasonable and is a more computationally efficient instance
selection method than CCIS.

Next, we further compare the computational cost by
GBA and CCIS over larger scale datasets (Fig. 4), high-
dimensional datasets (Fig. 5), and the datasets having large
numbers of classes (Fig. 6), respectively. Note that the com-
parison is based on the GA baseline to show whether GBA
and CCIS require longer or less computational time of per-
forming instance selection. In other words, the positive and
negative bars shown in Figs. 4, 5 and 6 mean that GBA/CCIS
require longer and less time for instance selection than GA,
respectively. As we can see that GBA significantly outper-
form CCIS where on average GBA is a more efficient algo-
rithm than CCIS.

5 Conclusion

Instance selection has been recognized as an important data
pre-processing step in the data mining and knowledge discov-
ery in databases (KDD) process. In this paper, a novel evolu-
tionary algorithm is proposed by combining biological evo-
lution and the traditional genetic algorithms, namely a GBA,
to closely simulate the natural evolution of an algorithm.

To assess the performance of GBA, large-scale experi-
ments were conducted. They were based on comparing five
well-known state-of-the-art algorithms, which are IB3, ICF,
DROP3, GA, and CCIS, over 50 different domain datasets.
First of all, classification error rates were examined. The

123

Z.-Y. Chen et al.

0
100
200
300
400
500
600
700
800
900

Aba
lon

e

Ann
ea

l

Aud
iol

og
y

Auto
s

Bala
nc

e

Brea
st-

ca
nc

er

Can
ce

r
Card

Derm
ato

log
y

Eco
li

Gen
e

Germ
an

Glas
s

Glas
s-g

2
Hea

rt

Hea
rt-

c

Hep
ati

tis

Hor
se

Hyp
oth

yr
oid

Io
no

sp
he

re Iri
s

Kr v
s.

Kp
Lab

or

Led
24

Live
r

T
im

e
(s

ec
on

ds
) GA

GBA

(a) Comparisons between GA and GBA over the 25 datasets

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200

Lrs

Lym
ph

og
rap

hy

New
-th

yr
oid

Optd
igi

ts

Pag
e-b

loc
ks

Pen
dig

its

Pho
ne

me
Pim

a

Pos
t-o

pe
rat

ive

Prim
ary

-tu
mor

Pro
mote

rs

Sati
mag

e

Seg
men

t
Sick

Sno
ar

Soy
be

an

Tex
tur

e

Tic-
tac

-to
e

Veh
icl

e
Vote

Vow
el

W
av

efo
rm

W
ine

Yea
st

Zoo

Ave
rag

e

T
im

e
(s

ec
on

ds
) GA

GBA

(b) Comparisons between GA and GBA over the other 25 datasets

Fig. 3 Average time spent by GA and GBA

0

2000

4000

6000

8000

10000

Aba
lon

e

Hyp
oth

yr
oid

Kr v
s.

Kp

Optd
igi

ts

Pag
e-b

loc
ks

Pen
dig

its

Pho
ne

me

Sati
mag

e

Seg
men

t
Sick

Tex
tur

e

W
av

efo
rm Avg

T
im

e
(s

ec
on

ds
) CCIS

GBA

Fig. 4 Average time spent by CCIS and GBA over large-scale datasets

-500

500
1500

2500

3500

4500
5500

6500

Aud
iol

og
y

Gen
e

Lrs

Optd
igi

ts

Pro
mote

rs

Sno
ar

Avg

T
im

e
(s

ec
on

ds
) CCIS

GBA

Fig. 5 Average time spent by CCIS and GBA over high-dimensional
datasets

experimental results show that on average GBA performs
best, which allows the 1-NN classifier to provide the low-
est error rates. In particular, it outperforms the other algo-
rithms over 27 datasets. Specifically, 1-NN with GBA per-

-6000

-4000

-2000

0

2000

4000

6000

8000

Aba
lon

e

Optd
igi

ts

Pen
dig

its

Tex
tur

e

Soy
be

an

Vow
el

Yea
st

Avg

T
im

e
(s

ec
on

ds
)

CCIS

GBA

Fig. 6 Average time spent by CCIS and GBA over the datasets having
large numbers of classes

forms better than the baseline without instance selection over
four datasets.

Moreover, GBA performs better than the others over
the datasets containing large numbers of data samples and

123

Instance selection by genetic-based biological algorithm

large numbers of classes. However, none of these algorithms
can perform very well over the datasets containing high-
dimensional data.

Second, the storage requirements after performing these
instance selection algorithms were examined. On average,
GBA can filter out the largest number of instances, which
requires the smallest storage space. This demonstrates the
robustness of GBA that the classification accuracy is not sac-
rificed in return for the larger reduction rate. For most of the
datasets containing large numbers of data samples and large
numbers of classes, GBA performs better than the others.
However, this examination shows that these algorithms are
limited to when handling high-dimensional datasets.

Finally, the three evolutionary algorithms, i.e., GA, CCIS,
and GBA, were compared in terms of time complexity. GA
is the most efficient algorithm since they are based on sim-
ple rules. However, GBA only takes a slightly longer time
than GA over most datasets. Moreover, on average, GBA
requires significantly shorter time than CCIS, especially
when the datasets contain large numbers of data samples,
high-dimensional data, and large numbers of classes.

Several issues can be considered as the future works. First,
the computational cost of the current evaluation function
is certainly high. Therefore, other efficient evaluation func-
tions can be taken into account for GBA. Second, since the
dataset size is increasing rapidly, some related techniques
and platforms can be employed to solve the big data prob-
lem, such as parallel computing and cloud computing, etc.
For example, Nojima et al. (2009) have shown that genetic-
based algorithms can be ported to the cloud computing plat-
form or parallel system. For GBA, the great migration mech-
anism can take advantage of the cloud computing platform.
This is because the great migration can be regarded as the
social activities between two or more populations, which can
improve the performance of evolutionary algorithms (Uludağ
et al. 2013; Xie et al. 2014).

Appendix: The schema theorems corresponding to GA
and GBA

The original model of GA is

m(H, t + 1) = m(H, t) × f (H)

f

×
[

1 − rc
δ(H)

l − 1
− o(H)rm

]
,

where H represents the schema, t is the generation, m(H, t)
is the number of strings belonging to schema H at generation
t , f (H) is the observed fitness, rc is the crossover rate, δ(H)
is the defining length, l is the length of the code, rm is the
mutation rate, and o(H) is the order of a schema.

The modified model of GBA is

m(H, t + 1) = m(H, t) × N f (H)

N f

×
[

1−rc
δ(H)

l−1
−o(H)rm −o(H)rmg ×MGT (m(H, t), t)

]

+ G K (H),

where H represents the schema, t is the generation, m(H, t)
is the number of strings belonging to schema H at generation
t , N f (H) is the nonlinear fitness functions, rc is the crossover
rate, δ(H) is the defining length, l is the length of the code, rm

is the mutation rate, o(H) is the order of a schema, rmg is the
great migration rate, MGT (m(H, t), t) is the trigger of the
Great Migration, and G K (K) is the genetic king protection
mechanisms, which can retain the good schema H .

The definition of nonlinear fitness functions Nf(H) is

Nf =
Hyperbolictangent

(
f (H)−0.5

σ 2

)
+ 1

2

It will increase/reduce the fitness strength depends on the
threshold.

In addition, the GK(H) represents the Genetic King Pro-
tection Mechanisms, and the definition of GK is

If N f (H) ≥ T hreshold then G K (H) = 1 else
G K (H) = 0.

If the schema H is good enough, it will be retained by
genetic king protection mechanisms.

The definition of great migration MGT (m(H, t), t) is
If the best fitness value is stable then MGT (m(H, t), t) =

1, else MGT (m(H, t), t) = 0.
If the best fitness value is stable, then apply the great

migration (A strong mutation) (c.f. Fig. 6 for the pseudo
code of GBA).

References

Aggarwal CC, Yu PC (2001) Outlier detection for high dimensional
data. In: Proceedings of the ACM SIGMOD conference, pp 37–46

Aha DW, Kibler D, Albert MK (1991) Instance-based learning algo-
rithms. Mach Learn 6(1):37–66

Ball P (2002) Natural strategies for the molecular engineer. Nanotech-
nology 13:R15–R28

Barnett V, Lewis T (1994) Outliers in statistical data. Wiley, Hoboken
Brighton H, Mellish C (2002) Advances in instance selection for

instance-based learning algorithms. Data Min Knowl Discov 6:153–
172

Cano JR, Herrera F, Lozano M (2003) Using evolutionary algorithms
as instance selection for data reduction: an experimental study. IEEE
Trans Evolut Comput 7(6):561–575

Derrac J, García S, Herrera F (2010) A survey on evolutionary instance
selection and generation. Int J Appl Metaheur Comput 1(1):60–92

Ellstrand NC (2003) Dangerous liaisons: when cultivated plants mate
with their wild relatives. Johns Hopkins University Press, Baltimore

Emigh TH (1980) Comparison of tests for Hardy–Weinberg equilib-
rium. Biometrics 36(4):627–642

123

Z.-Y. Chen et al.

Flynn JJ, Wyss AR (1998) Recent advances in South American mam-
malian paleontology. Trends Eco Evol 13(11):449–454

García-Pedrajas N, del Castillo JAR, Ortiz-Boyer D (2010) A cooper-
ative coevolutionary algorithm for instance selection for instance-
based learning. Mach Learn 78:381–420

Guyonm I (2003) An Introduction to variable and feature selection. J
Mach Learn Res 3:1157–1182

Holland JH (1992) Adaptation in natural and artificial system: an intro-
ductory analysis with applications to biology, control, and artificial
intelligence. A Bradford Book, Chester

Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a
review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

Jankowski N, Grochowski M (2004) Comparison of instances selection
algorithms I: algorithms survey. International conference on artificial
intelligence and soft computing, pp 598–603

Jing SY (2013) A hybrid genetic algorithm for feature subset selection
in rough set theory. Soft Comput 18:1373–1382

Knorr EM, Ng R, Tucakov V (2000) Distance-based outliers: algorithms
and applications. VLDB J 8:237–253

Koepfli KP, Gompper ME, Eizirik E, Ho CC, Linden L, Maldonado
JE, Wayne RK (2007) Phylogeny of the Procyonidae (Mammalia:
Carvnivora): molecules, morphology and the Great American inter-
change. Mol Phylogenet Evol 43(3):1076–1095

Li X-B, Jacob VS (2008) Adaptive data reduction for large-scale trans-
action data. Eur J Oper Res 188(3):910–924

Liu H, Motoda H (2001) Instance selection and construction for data
mining. Kluwer, Boston

Morgan GS (2002) Late Rancholabrean mammals from southernmost
Florida and neotropical influence in Florida pleistocene faunas.
Smithson Contrib Paleobiol 93:15–38

Nojima Y, Ishibuchi H, Kuwajima I (2009) Parallel distributed genetic
fuzzy rule selection. Soft Comput 13:511–519

Odum HT (1994) Ecological and general systems: an introduction to
systems ecology. University Press of Colorado, Niwot

Pollan M (2001) The year in ideas. A-Z. Genetic pollution, The New
York Times

Pyle D (1999) Data preparation for data mining. Morgan Kaufmann,
Burlington

Pradhan S, Wu X (1999) Instance selection in data mining. Technical
report. Department of Computer Science, University of Colorado at
Boulder

Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106
Reinartz T (2002) A unifying view on instance selection. Data Min

Knowl Discov 6:191–210
Stern C (1962) Wilhelm Weinberg. Genetics 47:1–5
Uludağ G, Kiraz B, Etaner-Uyar AŞ, Özcan E (2013) A hybrid multi-

population framework for dynamic environments combining online
and offline learning. Soft Comput 17:2327–2348

Wilson DL (1972) Asymptotic properties of nearest neighbor rules using
edited data. IEEE Trans Syst Man Cybern 2(3):408–421

Wilson DR, Martinez TR (2000) Reduction techniques for instance-
based learning algorithms. Mach Learn 38:257–286

Xie XF, Liu J, Wang ZJ (2014) A cooperative group optimization sys-
tem. Soft Comput 18:469–495

123

	Instance selection by genetic-based biological algorithm
	Abstract
	1 Introduction
	2 Instance selection
	2.1 ENN
	2.2 IB3
	2.3 DROP3
	2.4 ICF
	2.5 Genetic algorithms

	3 Genetic-based biological algorithm
	3.1 The basic concept
	3.2 Specific features of GBA
	3.2.1 Reasonable convergence
	3.2.2 King of the genetics: inter-generational mating
	3.2.3 Nonlinear adaptability
	3.2.4 Great migration
	3.2.5 GBA algorithm
	3.2.6 The differences between GA and GBA

	4 Experiments
	4.1 Experimental setup
	4.2 Classification error
	4.3 Storage requirement
	4.4 Time complexity
	4.4.1 Computational complexity
	4.4.2 Comparison to related works

	5 Conclusion
	Appendix: The schema theorems corresponding to GA and GBA
	References

