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Abstract— The advantage of graph-based anomaly detection 
is that the relationships between elements can be analyzed for 
structural oddities that could represent activities such as fraud, 
network intrusions, or suspicious associations in a social network. 
However, current approaches to detecting anomalies in graphs 
are computationally expensive and do not scale to large graphs. 
For instance, in the case of computer network traffic, a graph 
representation of the traffic might consist of nodes representing 
computers and edges representing communications between the 
corresponding computers. However, computer network traffic is 
typically voluminous, or acquired in real-time as a stream of 
information. In this work, we describe methods for graph-based 
anomaly detection via graph partitioning and windowing, and 
demonstrate their ability to efficiently detect anomalies in data 
represented as a graph. 

Keywords- Anomaly detection, graph mining, dynamic graphs. 

I.  INTRODUCTION 
Recent research efforts have involved the representation of 

complex data as a graph, in order to analyze the relational 
structure in the data. This research has touched on a wide 
range of graph-theoretic approaches that have been applied to 
a wide variety of domains. While some successes have been 
demonstrated, they have either been specific to a particular 
data set, a particular type of graph, or a particular graph 
algorithm. More importantly, they have not dealt with the 
scalability issues associated with “big data” when attempting 
to learn patterns and anomalies in data represented as a graph. 
For instance, in the case of computer network traffic, a graph 
representation of the traffic might consist of nodes 
representing computers, and edges representing 
communications between the corresponding computers. In 
addition, other potential data sources for aiding in the analysis 
of the network traffic could include details about the 
individual users, location of the computer nodes, or even 
switch information. Adding these heterogeneous data sets to 
the network traffic, represented as a graph, could provide the 
basis for discovering interesting structural patterns and 
anomalies, which may alert a security analyst to the potential 
threat in the form of a network intrusion attempt, denial-of-
service attack, or worms. However, computer network traffic 
is typically voluminous, or acquired in real-time as a stream of 
information. For example, CAIDA (www.caida.org) provides 
a data repository to the research community for the analysis of 
internet traffic [1]. In one example of network traffic collected 
by CAIDA, representing a dynamic denial-of-service (DDOS) 
attack at a single location, every second produced an average 

of 3,992 transactions, for a total of 2,395,234 transactions over 
a 10 minute span. 

To lay the foundation for this effort, we hypothesize that a 
real-world, meaningful definition of a graph-based anomaly is 
an unexpected deviation to a normative pattern. Such 
anomalies are associated with illicit activity that tries to mimic 
normal behavior. In a previous approach to graph-based 
anomaly detection, called GBAD [2], we used a compression-
based measure to find normative patterns, and then analyzed 
the close matches to the normative patterns to determine if 
they meet the above definition of an anomaly. However, while 
this approach has demonstrated its effectiveness in a variety of 
domains [3], the issue of scalability has limited this approach 
when dealing with domains containing millions of nodes and 
edges. Furthermore, many graphs of interest are dynamic, i.e., 
changes to the graph are streaming in over time. This further 
complicates the analysis, because we cannot just analyze a 
static graph, but would need to analyze snapshots of the graph 
over time. However, this streaming graph scenario also offers 
an opportunity for methods that can update the current set of 
patterns and anomalies based on only the changes to the graph, 
rather than repeated analyses on the large graph snapshots. We 
have developed such a method for pattern learning and 
anomaly detection in streams (PLADS) depicted in Figure 1. 
In this paper we describe the PLADS approach and 
demonstrate its effectiveness and scalability for large datasets. 

 

 

II. GRAPH-BASED ANOMALY DETECTION 
A graph is a set of nodes and a set of edges, where each 

edge connects either two nodes or a node to itself. More 
formally, we use the following definition. 
 

Figure 1. Network monitoring scenario for PLADS. Information about 
entities and relationships streams in over time, and PLADS maintains a 

current set of normative patterns and anomalies. 
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Definition:  A labeled graph G = (V,E,L) consists of the set V 
of vertices (or nodes), the set E of edges (or links) between the 
vertices, and the set L of string labels assigned to each of the 
elements of V and E.  

 
Much work has been done using graph-based representations 
of data. Using vertices to represent entities such as people, 
places and things, and edges to represent the relationships 
between the entities, such as friend, lives-in and owns, allows 
for a much richer expression of data than is present in the 
standard textual or tabular representation of information. 
Representing various data sets like telecommunications call 
records, financial information and social networks in a graph 
form allow us to discover structural properties in data that are 
not evident using traditional data mining methods. 

The idea behind the GBAD approach to graph-based 
anomaly detection is to find anomalies in graph-based data 
where the anomalous substructure (or subgraph) in a graph is 
part of (or attached to or missing from) a normative pattern. 
We assume a measure d(G1,G2) of the distance between two 
graphs G1 and G2. Several such measures have been 
developed, but we focus on a graph edit distance measure that 
computes the cost (number of additions, deletions and changes 
of a node, edge or label) of transforming G1 into a graph that is 
isomorphic to G2. 

 
Definition: A substructure SA is anomalous in graph G if (0 < 
d(SA,S) < TD) and (P(SA|S,G) < TP), where S is a normative 
pattern in G, TD bounds the maximum distance an anomaly SA 
can be from the normative pattern S, and TP bounds the 
maximum probability of SA.  
 
Definition: The anomalous score of an anomalous 
substructure SA based on the normative substructure S in 
graph G is d(SA,S) * P(SA|S,G), where the smaller the score, 
the more anomalous the substructure. 
 
The distance between two graphs can be due to the addition, 
removal or modification of structure from one graph to the 
other. The probability of SA given S and G is based on the 
frequency of SA among all graphs within distance TD of S. 
Therefore, the more anomalous substructure is that which is 
closer to the normative pattern and appears with lower 
probability. The importance of this definition lies in its 
relationship to any deceptive practices that are intended to 
obtain or hide information. The United Nations Office on 
Drugs and Crime states the first fundamental law of money 
laundering as “The more successful a money-laundering 
apparatus is in imitating the patterns and behavior of 
legitimate transactions, the less the likelihood of it being 
exposed” [4]. 

The advantage of graph-based anomaly detection is that the 
relationships between entities can be analyzed for structural 
oddities in what could be a rich set of information, as opposed 
to just the entities’ attributes. However, graph-based 
approaches have been prohibitive due to computational 
constraints. Because graph-based approaches typically perform 
subgraph isomorphisms, a known NP-complete problem, most 

approaches use some type of heuristic to arrive at an 
approximate solution. However, this is still problematic, and in 
order to use graph-based anomaly detection techniques in a 
real-world environment, we need to take advantage of the 
structural/relational aspects found in dynamic, streaming data 
sets. 

III. GBAD 
The PLADS approach is based on previous work on static 

graph-based anomaly detection (GBAD) [2]. Here we briefly 
review the GBAD approach. There are three general 
categories of anomalies in a graph: insertions, modifications 
and deletions. Insertions would constitute the presence of an 
unexpected vertex or edge. Modifications would consist of an 
unexpected label on a vertex or edge. Deletions would 
constitute the unexpected absence of a vertex or edge. GBAD 
discovers each of these types of anomalies. Using a greedy 
beam search and a minimum description length (MDL) 
heuristic, GBAD first discovers the best substructure, or 
normative pattern, in an input graph. The minimum 
description length (MDL) approach is used to determine the 
best substructure(s) as the one that minimizes the following: 

 )()|(),( SDLSGDLGSM +=  

where G is the entire graph, S is the substructure, DL(G|S) is 
the description length of G after compressing it using S, and 
DL(S) is the description length of the substructure. 

The GBAD approach is based on the exploitation of 
structure in data represented as a graph. Previous work found 
that a structural representation of such data can improve one’s 
ability to detect anomalies in the behaviors of entities being 
tracked [6]. GBAD discovers anomalous instances of 
structural patterns in data that represent entities, relationships 
and actions. GBAD uncovers the relational nature of the 
problem, rather than solely the traditional statistical deviation 
of individual data attributes. Attribute deviations are evaluated 
in the context of the relationships between structurally similar 
entities. In addition, most anomaly detection methods use a 
supervised approach, requiring labeled data in advance (e.g., 
illicit versus legitimate) in order to train their system. GBAD 
is an unsupervised approach, which does not require any 
baseline information about relevant or known anomalies. In 
summary, GBAD looks for those activities that appear to 
match normal/legitimate/expected transactions, but in fact are 
structurally different. 

Once GBAD finds a normative pattern and anomalies in a 
graph, it can then iterate to find additional anomalies. First, 
GBAD compresses the graph using the normative pattern, i.e., 
replacing each instance of the normative pattern with a newly-
labeled node. Then, GBAD is executed on this compressed 
graph to again find normative patterns and anomalies. This 
process can continue for multiple iterations to find more and 
more normative patterns, and anomalies to them, throughout 
the graph, and at different levels of abstraction as the graph is 
further compressed. 

For more details regarding the GBAD algorithms, the 
reader can refer to [2]. 
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IV. INITIAL OBSERVATIONS 
Take the example of a cyber-security threat where there is 

the leaking of information by employees with access to 
confidential and sensitive information. One of the Visual 
Analytics Science and Technology (VAST) 2009 mini-
challenges involved various aspects of a fictional insider threat 
scenario where someone is leaking information [7]. The goal 
of these challenges is to allow contestants to apply various 
visual analysis techniques to discover the spy and their 
associated actions. The VAST data set consists of the activities 
(card swipes and network traffic) of 60 employees at an 
embassy over the month of January in 2008. 

Starting with a graph of embassy employee activity data on 
January 29, 2008, consisting of 180 transactions (5,058 
vertices and 4,878 edges), we randomly inserted an extra edge 
and vertex into the graph, representing a potentially 
anomalous insertion. We then ran GBAD on the entire graph, 
targeting anomalous insertions. This results in the targeted 
anomaly being discovered in 2,364 seconds with no false 
positives. The normative pattern (shown in Figure 2) consists 
of 8 vertices and 7 edges. We then divided the graph into 10 
graph partitions, where each partition consists of 18 
transactions, and ran GBAD on each partition individually. 
This results in a much shorter running time, with the longest 
running partition taking only 215 seconds. However, while the 
targeted anomaly is discovered, it also results in 189 false 
positives being reported. 

In these experiments, the normative pattern is the same 
across all partitions. This leads us to make three observations. 
First, if we know the total number of instances of the best 
substructure, the targeted anomalous substructure would have a 
similar anomalous score as the reported most anomalous 
substructure. Second, and even more important, if we know the 
numbers of instances of each anomalous substructure across all 
of the partitions, our targeted anomalous substructure would 
come out on top by itself. And third, if we keep track of the 
best/most anomalous score across the partitions, we would be 
able to remove some false positives. 

In short, if we can effectively detect anomalies across 
multiple graphs, we can more efficiently handle not only very 
large graphs that are static (by partitioning them into multiple 
smaller graphs), but also graphs that represent a continuous 
stream of information. 

V. RELATED WORK 
Early work by Cook and Noble [8] on anomaly detection 

in one large graph defined anomalies as structural outliers, i.e., 
after compressing the graph based on normative patterns, the 
remaining structure was considered anomalous. More recent 
work by Akoglu et al. [9] also addressed anomaly detection in 
one large graph, but their target was to identify only 
anomalous nodes. Both of the above approaches assumed a 
static graph. 

One potential solution to handling very large graphs is to 
view the graph as a “stream” and processing the graph one, or 
a few edges, at a time. Previous work in this area has provided 
a few different approaches to handle graph streams. One 
approach is to use what is called a semi-streaming model as a 

way of studying massive graphs whose edge sets cannot be 
stored in memory. For example, Feigenbaum et al.’s work 
presents semi-streaming constant approximation algorithms 
for un-weighted as well as weighted matching problems, as 
well as an improvement for handling bipartite graphs [10]. By 
considering a set of classical graph problems in their semi-
streaming model, they were able to demonstrate that certain 
approximations to the problems can be achieved. Other work 
has generalized this approach to different graph problems, 
such as the shortest paths in directed graphs, and used 
intermediate temporary streams as a means of resolving the 
space issues [11][12][13]. Basically, these approaches propose 
a tradeoff between the available internal memory and the 
number of passes it requires. 

Another approach is to examine the problem of clustering 
massive graph streams and use a technique for creating hash-
compressed micro-clusters from graph streams [14]. 
Addressing the issues with large disk-resident graphs, the 
compressed micro-clusters are designed using a hash-based 
compression of the edges onto a smaller domain space.  

Recently, others have attempted to mine frequent closed 
subgraphs in non-stationary data streams. One such approach 
called AdaGraphMiner, maintains only the current frequent 
closed graphs, utilizing estimation techniques with theoretical 
guarantees [15]. Empirical experiments have demonstrated the 
effectiveness of this approach on graph streams representing 
chemical molecules and structural representations of cancer 
data. In addition, there have been recent attempts to discover 
outliers in massive network streams. Using what is called a 
structural connectivity model, some researchers have 
attempted to handle the issue of sparseness in massive 
networks by dynamically partitioning the network [16]. Using 
techniques such as reservoir sampling methods that compress 
a graph stream, one can search for structural summaries of the 
underlying network. The goal of this type of outlier detection 
is to identify graph objects which contain unusual bridging 
edges, or edges between regions of a graph that rarely occur 
together. 

However, all of the approaches so far have not addressed 
the issue of scalability associated with performing graph-based 
anomaly detection. While some approaches have detected 
outliers in graph streams, their objective is to identify unusual 
clusters of subgraphs in the graph by analyzing the statistical 
nature of the existence of edges, as opposed to discovering 
anomalies in the structure of a graph, or graph stream. In 
addition, while some work has attempted to discover 
anomalous subgraphs using an ensemble-based approach [17] 
based on the GBAD approach [2], that type of approach does 
not address the issue of scalability. 

VI. AN APPROACH TO GRAPH-BASED ANOMALY 
DETECTION ON PARTITIONS 

The advantages associated with graph-based anomaly 
detection are well-documented, providing a myriad of 
approaches for discovering structural and relational anomalies. 
However, they have been limited to static domains, or data 
sets that are relatively small in size – certainly nothing on the 
order of what we would call “big data”. Our preliminary 
experiments have shown that we can devise an approach 
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whereby if we take into account smaller, individual partitions 
(i.e., a segment of the data that is processed individually, in 
parallel with other partitions) in terms of what we know about 
other partitions, we can not only provide similar accuracy but 
do it in a fraction of the time. In order to formalize our 
approach, we propose the PLADS algorithm, which accepts as 
input a set of N graph partitions either by partitioning a static 
graph, or fed in over time. 

 

PLADS (input graph partitions) 
1. Process N partitions in parallel 

a. Each partition discovers top M normative patterns. 
b. Each partition waits for all partitions to discover their 

normative patterns. 
2. Determine best normative pattern P among NM 

possibilities. 
3. Each partition discovers anomalous substructures based 

upon P. 
4. Evaluate anomalous substructures across partitions and 

report most anomalous substructure(s). 
5. Process new partition 

a. If oldest partition(s) has exceeded a threshold T (based 
upon criteria such as the number of available partitions 
or the time-stamped-age of the partition), remove 
partition(s) from further processing. 

b. Determine top M normative patterns from new 
partition. 

c. Determine best normative pattern P’ among all active 
partitions. 

d. If (P’ ≠ P), each partition discovers new anomalous 
substructures based upon P’. 

e. Else, only new partition discovers anomalous 
substructure(s). 

f. Evaluate anomalous substructures across partitions and 
report most anomalous substructure(s). 

g. Repeat. 
 

This is a generic algorithm for applying graph-based anomaly 
detection methods to streaming data. The user can apply any 
normative pattern discovery techniques and any graph-based 
anomaly detection algorithms with this approach. 

A. Experiments Using Cyber-Security Example 
First, we will show the PLADS algorithm applied to a 

subset of the cyber-security insider threat data presented 
earlier. In this experiment, we analyze just the movements of 
the employees throughout the embassy over the specified 
month of January in 2008. This set consists of card swipes as 
employees enter various rooms in the embassy. 

1) GBAD 
As input to GBAD, the data is represented as a graph, 

composed of 39,331 vertices and 38,052 edges, where 
movement, building, and type of room are depicted as vertices 
and edges indicating direction and movement between rooms. 
The normative pattern for this graph is depicted in Figure 2. 
After running GBAD on the entire graph, two anomalous 
substructures are discovered (one of the substructures is shown 

in Figure 2). However, it took 14,347 seconds to discover the 
anomalous substructure when analyzing the entire graph. 

 
Figure 2. Normative pattern (top) and anomalous substructure (bottom) 

discovered in the VAST embassy insider challenge dataset. 
 

2) PLADS 
We applied the PLADS approach to the same dataset, 

divided into ten equal-sized partitions. We arbitrarily chose to 
initially process the first 5 (N) partitions of the graph. Running 
them in parallel, all of the partitions finish processing in 293 
seconds, each producing 3 (M) normative patterns. We then 
examine all of the partitions’ normative patterns, searching for 
the best normative substructure among them (i.e., the 
substructure that maximizes the value of size * frequency). 
The result is a normative pattern P identical to the normative 
pattern shown in Figure 2. Next, each partition discovers 
anomalous substructures based upon P. Only 1 substructure is 
reported as anomalous across all of the partitions, with the 
longest running partition taking 328 seconds. Since there is 
only one anomalous substructure reported, evaluation is 
trivial. (It should also be noted that this is one of the targeted 
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anomalous substructures discovered when the graph was 
processed in its entirety.) 

Processing data as streams can be handled in two ways. 
Either we can always remove the oldest partition, or we can 
remove any partitions that are older than some time threshold 
T (i.e., a sliding window). For this example, we will do the 
former, removing the oldest partition and processing a new 
partition (e.g., removing partition 1 and processing partition 
6). We then discover the best substructure in the new partition, 
so that we can determine the best normative pattern among all 
of the remaining partitions. However, while the reported 
normative pattern in partition 6 is different, it is not better than 
the best substructure reported by the other five partitions. So, 
we use the same best substructure on partition 6, and no 
anomalous substructures are discovered (in 106 seconds). 
Also, since we are using the best substructure from a previous 
iteration, we do not have to re-discover any anomalous 
substructures in the older partitions. 

At the next iteration (partition 2 is removed and partition 7 
is added), we discover that the normative pattern has not 
changed (i.e., it is still the best substructure across all of the 
active partitions). Again, only the new partition needs to be 
analyzed for any anomalous substructures, as the anomalies 
would not change for the already processed partitions. 
Analysis of the results from the new partition (partition 7) 
yields (in 257 seconds) no anomalous substructures. This same 
behavior continues over partitions 8 and 9, using 207 and 301 
seconds respectively. However, on partition 10, the same best 
substructure is reported, but a new anomalous substructure is 
reported of equal “anomalousness” (in 501 seconds) to the 
substructure discovered in partition 3. This happens to be the 
second anomalous substructure discovered when the entire, 
non-partitioned graph was processed. 

So, we are able to implement a graph-based anomaly 
detection approach on data that represents movements of 
people, and successfully discover the same two anomalous 
substructures (with no false positives) within a streaming 
approach in a fraction of the time (1,993 seconds) it took to 
process the entire graph (14,347 seconds). However, this 
graph is rather sparse (i.e., few edges compared to the number 
of vertices). Next we will examine results on a denser graph 
that also represents data that can be streamed. 

B. Experiments Using Network Traffic Data 
The Cooperative Association for Internet Data Analysis 

(CAIDA) is a publicly available resource for the analysis of IP 
traffic. Through a variety of workshops, publications, tools, and 
projects, CAIDA provides a forum for the dissemination of 
information regarding the interconnections on the internet. One 
of the core missions of CAIDA is to provide a data repository 
to the research community that will allow for the analysis of 
internet traffic and its performance (www.caida.org/data/). 
Using GBAD, we analyzed the CAIDA AS (Autonomous 
Systems) data set for normative patterns and possible 
anomalies [1]. The AS data set represents the topology of the 
internet as the composition of various Autonomous Systems. 
Each of the AS units represents routing points through the 
internet. 

1) GBAD 
We represent the data as a graph composed of 24,013 

vertices and 98,664 edges, with each AS depicted as a vertex, 
and an edge indicating a peering relationship between the AS 
nodes. Figure 3 shows a portion of the AS graph, where the 
rectangle indicates the normative pattern and the emboldened 
edge indicates the anomalous structure found by GBAD. 

This example shows the advantage of using a graph-based 
approach on a complex structure. While the data indicates 
many provider/customer relationships, of which the norm is a 
particular AS being the provider to three different customers, 
the anomaly indicates an unusual connection between two 
ASes. Such an inconspicuous structure would probably be 
missed by a human analyst, and shows the potential of an 
approach like GBAD to find these anomalies in network 
traffic data. However, GBAD took 59,743 seconds to discover 
the anomaly. 
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Figure 3. Normative pattern (square) and anomaly (bold) discovered in the 

CAIDA dataset. 

2) PLADS 
In order to demonstrate the potential effectiveness of an 

incremental approach to graph-based anomaly detection, we 
apply the PLADS algorithm to this same CAIDA data set 
divided into ten equal-sized partitions. We again arbitrarily 
chose to initially process the first 5 (N) partitions of the graph. 
Running them in parallel, all of the partitions finish processing 
in 210 seconds, each with 3 (M) normative patterns. We then 
examine all of the partitions’ normative patterns, searching for 
the best normative substructure among them. The result is the 
normative pattern shown in Figure 4, which is smaller than the 
normative pattern found when running on the entire graph (see 
Figure 3). Based upon the best substructure from among all of 
the partitions, we then search for all anomalous substructures 
related to that normative pattern. The result is that 166 
substructures are reported as anomalous across all of the 
partitions, with the longest running partition taking 112 
seconds. We then examine all of the reported anomalous 
substructures across the partitions, and the result is that 2 
substructures are reported as equally anomalous. However, at 
this point, neither of the substructures are the targeted 
anomalous substructures. 
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Similar to the previous example, we handle the data 
incrementally by removing the oldest partition and processing 
a new partition. We then discover the best substructure on the 
new partition, so that we can determine the best normative 
pattern among all of the remaining partitions. The result is the 
discovery of the normative pattern shown in Figure 3 (i.e., the 
same normative pattern from processing the entire graph) in 
92 seconds. Since the normative pattern has changed since the 
last iteration, we have each partition re-discover any 
anomalous substructures based upon the new normative 
pattern. Examining all of the reported anomalous substructures 
across the partitions, we discover that the most anomalous 
substructure (found in partition 5) is the one that was 
identified when we ran GBAD on the entire graph. 

At the next iteration (partition 2 is removed and partition 7 
is added), we discover in 45 seconds that the normative pattern 
has not changed (i.e., it is still the best substructure across all 
of the active partitions). In this case, only the new partition 
needs to be analyzed for any anomalous substructures, as the 
anomalies would not change for the already processed 
partitions. Analysis of the results from the new partition 
(partition 7) yields (in 58 seconds) no substructures more 
anomalous than what were already discovered. 

Taking this scenario one more iteration (partition 3 is 
removed and partition 8 is added), we discover that the best 
normative pattern across all of the partitions is different from 
the previous iteration (see Figure 4). So, similar to two 
iterations back, all of the active partitions need to be re-
evaluated based upon this new best substructure. The result is 
two new anomalous substructures. However, if you compare 
their “anomalousness” to the one reported earlier (shown in 
Figure 3), one can see that there are more instances of this 
newly reported anomalous substructure, so the anomalous 
substructure discovered earlier would still be the most 
anomalous. 

After two more iterations of adding and removing 
partitions (i.e., processing all of the partitions that represented 
the single graph), the new normative pattern stays the same, 
and the anomalousness of reported substructures lessens (i.e., 
becomes more common), still leaving us with the targeted 
anomalous instance. 

 

 
Figure 4. Normative pattern early (left) and later (right) in the “stream”. 

 

So, we are able to implement a graph-based anomaly 
detection approach on network data that is able to successfully 
discover the same anomalous substructure within an 
incremental approach in a fraction of the time (642 seconds) it 
took to process the entire graph (59,743 seconds). Even the 
overhead associated with comparing normative patterns and 
anomalous substructures across partitions is negligible, as the 
number of substructures to evaluate from each partition is 
minimal. 

C. Experiments Using Larger Synthetic Graphs 
While the previous real-world data set experiments analyze 

some interesting scenarios, the data sets are relatively small 
and the ability to control the anomalies is limited. So, in order 
to validate our approach on larger graphs and vary the 
substructures, we used a synthetic graph generator to generate 
a sparse graph of ~2M vertices and edges. While not on the 
order of what most would define as “big data” [18], where 
graphs consist of billions of nodes, processing partitions of 
this size using the PLADS approach could quickly add up to 
this scale.  

1) GBAD 
The graph consists of a specified normative subgraph of 10 

vertices and 9 edges, with random substructures of varying 
levels of anomalousness (i.e., frequency of their existence) 
injected into the graph. After running GBAD on the complete 
graph, the anomalous substructure, consisting of an 
unexpected edge and vertex, is discovered as shown in Figure 
5 (attached to the normative pattern). However, the normative 
pattern and anomalous substructure are discovered in 276,873 
seconds (i.e., over 3 days) - hardly useful in a real-world 
environment. 

 
Figure 5. Normative pattern and anomalous substructure in synthetic graph. 
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2) Streaming GBAD 
Again, to demonstrate the potential effectiveness of a 

partition-based incremental streaming approach to graph-
based anomaly detection, we apply the PLADS algorithm to 
this same synthetic graph. For this example, we have divided 
the original graph into 100 partitions, where each partition 
consists of approximately 19,000 vertices and edges. We 
initially process the first 20 (N) partitions of the graph. The 
choice of an initial 20 partitions is somewhat arbitrary, as our 
goal is to just get a representative sample with which to start 
analyzing. Running them in parallel, all of the partitions finish 
processing in 9 seconds, each with 3 (M) normative patterns. It 
should be noted that even if the partitions are not processed in 
parallel, it only takes 136 seconds to process the 20 partitions 
serially. However, we will also use T=20 as the size of our 
processing window (i.e., partitions retained in memory). 

We then examine all of the partitions’ normative patterns, 
searching for the best normative substructure among them. 
The result is the normative pattern shown in Figure 5, which is 
the same (targeted) normative pattern found when running on 
the entire graph. Based upon the best substructure from among 
all of the partitions (previous step), we then search for all 
anomalous substructures related to that normative pattern. The 
result is that only 2 anomalous instances (from partition 17) 
are reported as anomalous across all of the partitions. At this 
point, the anomalous substructure is not the targeted 
anomalous substructure. 

Processing partitions 21-33 results in no new normative 
patterns or anomalies, at a total processing time of 92 seconds. 
Processing partition 34 does not report a new normative 
pattern, but 2 instances of an anomalous substructure are 
discovered. The new anomalous substructure is evaluated 
against the current best anomalous substructure, and it is 
discovered to be the same anomalous substructure (albeit, still 
not the targeted anomaly at this point). Thus, we now have 4 
instances of the current best anomalous substructure. This step 
takes 8 seconds.  

Processing partitions 35-57 results in no new normative 
patterns or anomalies, at a total processing time of 165 
seconds. Processing partition 58 does not report a new 
normative pattern, but 3 instances of a new anomalous 
substructure are discovered. The anomalous substructure is 
evaluated against the current best anomalous substructure, and 
is found to be different and more anomalous. Thus, this new 
substructure becomes the current best anomalous substructure. 
This step takes 7 seconds, and is still not the targeted anomaly.  

Processing partitions 59-78 results in no new normative 
patterns or anomalies, at a total processing time of 141 
seconds. Processing partition 79 does not report a new 
normative pattern, but 3 instances of an anomalous 
substructure are discovered. The anomalous substructure is 
evaluated against the current best anomalous substructure, and 
it is discovered to be the same anomalous substructure. Thus, 
we now have 6 instances of the current best anomalous 
substructure. This step takes 7 seconds. It is also interesting to 
note that in terms of “global anomalousness”, our visibility is 

limited to the partitions that are retained in memory. If we 
could compare the current best anomalous substructure to the 
one discovered in partition 17 (as well as partition 34), the 
older substructures would be more anomalous. 

Processing partitions 80-84 results in no new normative 
patterns or anomalies, at a total processing time of 35 seconds. 
Processing partition 85 does not report a new normative 
pattern, but 1 instance of an anomalous substructure is 
discovered. The anomalous substructure is evaluated against 
the current best anomalous substructure, and is found to be 
different and more anomalous. Thus, this new substructure, 
which is the targeted anomaly discovered when analyzing the 
entire graph (shown in Figure 5), becomes the current best 
anomalous substructure. This step takes 7 seconds. Processing 
partitions 86-100 results in no new normative patterns or 
anomalies, at a total processing time of 103 seconds. 

Again, we are able to implement a graph-based anomaly 
detection approach on a larger graph that is able to 
successfully discover the same targeted anomalous 
substructure within a streaming approach in a fraction of the 
time (574 seconds) it took to process the entire graph (276,873 
seconds). Timings for each partition are shown in Figure 6, 
with partitions containing anomalous substructures shown in 
red at the top. As noted earlier, the size of the window (i.e., the 
number of partitions retained in memory) does affect what 
anomalous substructures are discovered. At the end of 
processing all 100 partitions, the targeted anomalous 
substructure is reported as the best. However, if the targeted 
anomalous substructure was in an early partition, a later 
partition may report a less anomalous substructure (as opposed 
to when we process the non-partitioned graph), because the 
targeted anomalous substructure will have fallen out of the 
window when T=20.This fits into the idea of concept drift 
when handling data as a stream, whereby subgraphs that are 
reported as anomalous may lessen in their “anomalousness” as 
new information is received. 

Running this same experiment using different values for T 
(the initial number of partitions, N, is set to the same value), 
we discover that: 

• T=1: the newest partition always has the current best 
anomalous substructure (if any). 

• T=5: due to the scarcity of injected anomalous 
substructures, only one partition in the window contains an 
anomalous substructure, leaving the newest partition to 
always have the current best anomalous substructure. 

• T=10: when the targeted anomalous substructure is 
discovered at partition 85, within the window is the 
previous best anomalous substructure, which would be 
replaced by the targeted anomalous substructure because it 
is more anomalous (score wise). (Same results for T=15.) 

In addition to accuracy, the running times are also slightly 
affected by the change in T, as shown in Figure 7. We see that 
total running time decreases as the window size T increases 
due to the increased ability to exploit parallelism across 
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partitions in the window. Thus, T (and N) is bound by the 
number of processors available. While there is some overhead 
associated with having to compare substructures across 
partitions, it is minimal from a run-time perspective as well as 
system resources. Also, the value chosen for M (number of 
normative patterns) can be increased with minimal impact to 
performance. From a user perspective, one must determine 
how truly “normative” is a pattern that is not in the top M. 
 

 

VII. CONCLUSIONS AND FUTURE WORK 
Handling large or streaming graphs provides the 

opportunity to handle complex data sets that are well-suited 
for graph-based approaches. We have proposed a method for 
analyzing graphs using a parallel partitioning approach that 
can discover anomalous substructures. We have also 
demonstrated the scalability of our approach with an order-of-
magnitude improvement in the running-times of a graph-based 
anomaly detection approach. Using real-world data from a 
cyber-threat scenario, and actual network traffic between 
autonomous systems, we are able to discover the anomalies 
with minimal false-positives using a parallel partitioning 
approach to processing segments of the entire graph. While 
there are several different approaches to graph-based 
knowledge discovery and anomaly detection, the algorithm 
presented is not dependent on a single approach. In future 
work, we will examine the scalability of such an approach to 
“big data” sizes as well as high-speed streams. In addition, we 
would like to further examine this approach in a variety of 
other real-world domains, such as social networks. 
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Figure 7. Running times on synthetic graph based upon window size (T). 

Figure 6. Partition timings, where highlighted partitions indicate newly-discovered anomalies. 
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