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Abstract - Although portland cement concrete is the most 
widely used construction material in the world, efficient 
simulations for predicting hydration and property development 
(hardening and aging) are yet to be developed and made widely 
available to researchers and engineers. Current state-of-the-
art simulations rely on computationally expensive models to 
generate spatially resolved time sequences of chemical and 
physical properties (microstructures) that allow engineers to 
predict permeability, strength, and durability. Improving 
simulation accuracy or efficiency would be a significant 
contribution. We describe a novel application of neural 
networks to simulate the microstructure of hydrating tricalcium 
silicate (the most abundant component of ordinary portland 
cement). Initial model predictions correlate well with 
benchmark models but require only a small fraction of the 
computation time. 

Keywords: artificial neural networks, microstructure 
simulation, engineering application 

 

1 Introduction 
  The properties of concrete, the most used material in the 
world by mass other than water, are largely due to portland 
cement, the binder that provides strength and durability. As 
such, proper understanding of cement hydration and property 
development (hardening and aging) in concrete is vital to 
infrastructure development and maintenance. Unfortunately, 
cement hydration is among science’s enigmatic challenges, 
and ways to efficiently predict hydration and property 
development are widely sought [1]. 
 Portland cement concrete is a complex composite 
consisting of aggregates (stones which provide volume, mass 
and stability to the concrete), cement paste (hydrated cement), 
unhydrated cement, and water-filled or partially water-filled 
pores. Furthermore, the aggregate, cement paste, and cement 
particles are themselves complex composites. Thus, the 
properties of concrete are largely dependent upon the 
proportions of these constituents and the chemistry and 
microscopic physical structure of the hydrated portland cement 
paste called microstructure (what the material physically looks 
like). 
 Predicting the progress of hydration and microstructure 
development is an ongoing challenge. Current modeling 
strategies require researchers to opt for either a 

computationally intensive approach that provides detailed 
microstructure, in some cases requiring weeks of run time for 
massively parallelized code on supercomputing platforms [2], 
or a computationally efficient approach that sacrifices detail 
for computational speed [3]. The goal of this work was to 
develop and evaluate a novel application of machine learning 
to streamline computations associated with microstructure 
development and, thus, reduce the cost of predicting cement 
microstructure. 
 After presenting some background and related work, we 
describe our proposed approach followed by our experimental 
methodology, results, discussion, and conclusions. 

2 Background and related work 
 Type I portland cement consists mainly of alite, a form of 
tricalcium silicate (C3S). Hydration of alite has historically 
been described as a process characterized by five distinct 
stages defined by which chemical reactions control the 
physical and chemical changes (kinetics) in that stage [4]. 
Hydration starts with the formation of hydrate nuclei at various 
sites on the alite surface, a random or stochastic process. These 
nuclei grow over time, fill the pore space, cause the cement to 
harden and properties to change, e.g. strength to develop.  
Model-based prediction of these kinetic behaviors is thought to 
be a key step in understanding how to design and optimize 
cements and other constituents of portland cement concrete [5]. 

2.1 Existing models of concrete hydration 
 The details of the complex process of alite hydration are 
vigorously debated but have been implemented in a number of 
existing models, including HydratiCA [6], Mi-CBM [3], 
CEMHYD3D [7], and µic (pronounced mīk) [8]. We briefly 
present each model below.  
 Developed at the National Institute of Standards and 
Technology (NIST), HydratiCA uses a kinetic cellular 
automaton-based (or kinetic CA) approach [7][9] to capture the 
stochastic nature of microstructure development. The CA 
approach models the problem as a three-dimensional (3-D) 
array of particles with associated properties in a space defined 
by a collection of voxels (i.e., a pixel with an assigned volume 
and location in 3-D space). Changes to the particles and their 
properties over time is determined by the repeated application 
of rules describing the interactions among neighboring 
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particles. HydratiCA was developed and optimized for the 
simulation of mineral hydration processes and is based on an 
asynchronous 3-D stochastic kinetic CA. CA models such as 
HydratiCA can be viewed as image-based models that produce 
detailed microstructures that can be viewed as simulated 3-D 
color pictures similar to those shown in Fig. 1. 

Fig. 1. Simulated Microstructure Images. 

 A predecessor of HydratiCA, CEMHYD3D simulates 3-
D cement microstructures using carefully calibrated 
probabilistic rules [7]. In spite of some weaknesses, 
CEMHYD3D successfully generates microstructures that 
appear to reproduce a number of physical properties [10]-[12]. 
 Developed by Bishnoi and Scrivener [8], µic is a user-
definable modeling platform for representing microstructure 
and dynamics of microstructural change (kinetics). The authors 
define it as a tool-based “vector approach,” which stores 
information concerning the position, orientation and size of 
individual microstructural features as a vector. As is the case 
with the other microstructure-generating models, µic suffers 
from a high computational expense.   
 Mi-CBM (Multi-ionic Continuum-Based Model) is a 
continuum-based model that averages properties in predefined 
ways. This results in properties such as average density at a 
particular radius rather than density as a function of radius, 
azimuth and polar angle. While less computationally expensive 
than HydratiCA, Mi-CBM does not provide detailed 
microstructural information. 

2.2 Machine learning in concrete and ceramics 
 In the field of cement hydrations, machine learning has 
only been used in select cases and ways. For instance, Devaney 
and Hagedorn [13], applied several machine learning 
techniques to discover new rules for classifying hydrating 
plaster over multiple time periods. They trained on X-ray 
micro-tomography data by using unsupervised classification, 
decision trees, and genetic programming to classify plaster 
powder and applied the learned rules to data at different 
hydration times. This work was also extrapolated to separate 
and distinguish un-hydrated plaster from gypsum crystals in 
the microstructure.  
 Wang and Yang [14], modeled early-age hydration 
kinetics of portland cement using flexible neural trees [15] 

coupled with genetic algorithms to evolve the tree’s structure, 
rules, and parameters. The results show that the simulations 
and rate of hydration agreed well with experimental data. 
 However, neither of these approaches address the issue of 
microstructure development. To the best of our knowledge, 
nobody has attempted to apply a machine learning approach 
for evolving cement microstructure. One of the issues is that 
traditional machine learning classifiers are deterministic, and 
what we are dealing with in this domain are physical processes 
with some randomness. Some research, however, has dealt 
with predicting behavior in chaotic physical systems, such as 
weather forecasting [16]. 

3 Proposed autoregressive model (ARM) 
 Our proposed approach aims to improve the efficiency of 
microstructure generation by combining a CA with an artificial 
neural network. Specifically, we developed a set of non-linear 
autoregressive artificial neural networks [17], or 
autoregressive model (ARM), to predict the next state of alite 
(C3S) particles given a set of prior states for the particles and 
their neighbors. Once the neural networks are trained, we 
initialize our model using a CA-based tool to generate an initial 
set of particle states, then feed those initial states into the neural 
networks to predict the next set of states. These predicted states 
are added to the CA-generated states and fed back into the 
neural networks to predict the next set of states. This cycle 
continues until states have been predicted for the desired 
number of time steps. 

3.1 Cement hydration and CA state generation 
 For the CA phase of our approach, we developed an 
application we call HydratiCA-lite, based on stochastic rules 
for chemical reactions. HydratiCA-lite simulates the 
conversion of cement grains (C3S) to cement hydrates (C-S-
H(I), C-S-H(II) and CH).  Nucleation sites (the location where 
the first hydrates form) are picked at random from among an 
available set of voxels and precipitating phases are allowed to 
grow (deposit). Currently, the morphology used for C3S 
particles is spherical, but others can also be included. 
 To reduce the amount of time needed to simulate 
hydration, HydratiCA-lite was implemented as a parallel 
algorithm by dividing the full lattice of particles into smaller 
sub-lattices, each one belonging to a single process. This 
parallel HydratiCA-lite model effectively produces 
microstructure, local solution, and solid phase compositions. 
Global properties can also be computed by forming spatial 
averages over the system volume. 
 The chemical reactions shown in Fig. 2 for C3S hydration 
along with their respective kinetic rate constants (kj

i) were 
adopted from Bullard and Flatt [18].These chemical reactions 
determine the nature of the microstructure formed; each 
chemical species contributes to the morphology and properties 
of it. The rate of formation and consumption of species is 
governed by the kinetic constants and associated rate laws. 
These play an important role in the kinetics of C3S hydration. 
For more information, see reference [6]. 
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3.2 Autoregressive model 
The HydratiCA-lite output was used as input to the ARM 

and to generate the microstructure data to both train and 
validate the neural network. This HydratiCA-lite data 
represents the hydration and property development of cement 
as a function of time. Thus, this data is a series of 
microstructure snapshots at different times. The period of time 
between snapshots is defined as the lag [19]. 

Fig. 2. Reaction Schema, Colors Map to Table I and Rate 
Constants to Tables II and III. 

The neural network learns a function F that satisfies the 
autoregressive model defined by: 

 r(k) = F[r(k-1), …, r(k-nr)] + e(k)  (1) 

where the value of r at lag k depends on past values of r and the 
noise sequence e(k) and where F is a function that produces the 
minimum error given a chosen objective (cost function). 

Intuitively, r(k) is the microstructure snapshot (at lag k) 
being predicted, and r(k - 1), …, r(k - nr) are prior snapshots 
used to inform the current prediction. The use of multiple 
snapshots rather than only the one immediately prior to r(k) 
enables the model to capture the rate of change (kinetics) of the 
reaction. The more general form of (1) includes an additional 
set of external information. In our case, however, such external 
information was not used.  

To model (1), we use a Layered Digital Dynamic Network 
(LDDN) [20]. LDDNs support multiple recurrent (feedback) 
connections. Networks with such connections have been shown 
to be effective for time-series data modeling [17]. The structure 
of LDDNs also enable a type of memory that makes it possible 
to learn time-varying patterns (i.e., their output at any given lag 
will depend not only on the current network input, but on the 
history or the past sequence of inputs). 

It is precisely this feature of LDDNs that make them of 
interest for our task. The recurrent (autoregressive) network 
receives an input signal which will propagate forward through 
the network’s layers, while delayed versions of the output (the 
network's results) and input signals, go into the input's layer 
through an arrange of delays that modifies the entering signals 

(tapped delay lines) in order to successfully simulate time series 
behavior. Unlike static networks, the computed output of the 
network is a function of the current inputs, the weights and the 
biases of the network’s layers, and the computed outputs from 
previous lags. More complete information regarding LDDNs 
can be found in [20]. 

3.3 Network training 
 The training examples were chosen to be three-
dimensional (3-D) Moore neighborhoods of voxels. Thus, the 
number of voxels (3-D pixels) within a neighborhood is 27. 
Each of the neighborhoods contain unique voxels, thus the 
neighborhoods do not overlap with each other.  
 The software used for network simulation and training 
was MATLAB 2014a [21]. Training of the network used an 
internal mechanism to avoid over-fitting and to optimize the 
network outputs; this mechanism takes the data and distributes 
it randomly into three internal sub-categories: training, 
validation, and testing. The training data is used to learn 
network weights. The validation set is used to check for the 
stopping condition, and the testing set is used to evaluate 
different model parameters (e.g., different weight 
arrangements). 
 The algorithm chosen for training uses a Levenberg-
Marquardt back-propagation method. The cost function used 
during training is the mean squared error (MSE) of the 
network's outputs compared to the original target data [20]. 
The network is trained in two phases. First, we apply open-loop 
training that does not use the delayed feedback loops that 
enable “memory” in the LDDN network. Once that completes, 
the network starts with the final weights from the open-loop 
training phase and initiates the closed-loop training phase. This 
second phase makes use of the delayed feedback of the outputs 
in cost computations. 
 This dual approach seeks to enhance the performance of 
the neural network's recurrency by re-adjusting the weights 
according to feedback from previous outputs. This promises to 
reduce the effect of error propagation. The neural network is a 
standard two-layer feed-forward network having an input layer, 
one hidden layer and an output layer, with a sigmoidal transfer 
function in the hidden layer, and a linear transfer function in the 
output layer. 

3.4 Data processing: color channel separation 
 Like HydratiCA, HydratiCA-lite’s output can be viewed 
as simulated 3-D color images. To produce these simulated 
images, a specific color was chosen for each solid phase (e.g., 
magenta=CH, yellow=C-S-H(I), white=C3S, cyan=C-S-H(II)). 
These choices were made so that each color channel (red, 
green, and blue) would convey different information about the 
chemical components in the concrete. Table I shows the 
mapping between chemical species (molecular entity) and 
color channels. 
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Table I. Species Assigned to Each Channel. 
RED GREEN  BLUE  

C3S  C3S  C3S  

C-S-H (β) C-S-H (β) CH 

CH C-S-H (γ) C-S-H (γ) 
 
To fully leverage this information, we separate the output from 
HydratiCA-lite into three separate color channels. Thus, three 
different sets of inputs to the network were considered, each 
representing one color channel. Each channel varies 
continuously between 0 and 1, and each was trained and 
predicted separately [22], resulting in three different neural 
networks. 

3.5 Data preprocessing: static voxel removal 
 Initial experiments showed that the presence of static 
voxels (voxels whose value does not change) during training 
significantly degraded performance of the model. To reduce the 
impact of such voxels, a threshold value was chosen for the 
number of dynamic voxels a neighborhood must have to be fed 
to the network. We arbitrarily chose a threshold value of nine. 
Thus, if a neighborhood contained fewer than 9 dynamic 
voxels, the neighborhood was discarded from the data. 
Unfortunately, this practice also discards some dynamic voxels 
(those in neighborhoods with fewer than 9 dynamic voxels) and 
results in incomplete predictions. Therefore these voxels are 
incorporated into a set named excluded dynamic voxels and are 
predicted separately. 

4 Experimental methodology 
4.1 Baseline simulations and data generation 
 For our experiments, we first ran HydratiCA-lite to 
generate data for 1200 simulated 3-D images of cement 
hydration under a predetermined set of reaction rates (kinetic 
constants). Each image represented successive 100-second 
intervals. 
 This data set served as the training data for our neural 
network. We then ran a second HydratiCA-lite simulation using 
the same set of kinetic constants. Due to the stochastic nature 
of the hydration process, the resulting data differed 
qualitatively and quantitatively (as expected and desired) from 
our training data. This second simulation served as test data for 
our experiments. These two data sets (train1 and test1) were 
used to test the time and accuracy of our proposed approach 
when the training kinetics match the test kinetics but nucleation 
sites differ.  
 We also wanted to evaluate the impact of varying the test 
kinetics. To do so, we ran a third simulation with HydratiCA-
lite with a different set of kinetic constants and different 
nucleation sites. The resulting data (test2) would be used to 
evaluate the ability of the trained model to adapt to different 
reaction rates.  

 Even though there is only one training set, the subscript 
on train1 serves as a reminder that its kinetic constants match 
those of test1. Each simulation produced 1200 3-D images. The 
kinetic constants used are shown in Tables II and III. All other 
simulation parameters were unchanged across the three 
simulations. 
 

Table II. Kinetic Constants for Train1 and Test1 
Reaction kf (mol/m2s) kb (mol/m2s) 
C3S 5.20E-07 5.20E+10 
C-S-H(I) 1.20E-06 3.97E+01 
C-S-H(II) 1.00E-06 9.12E+06 
CH 7.19E-06 1.14E+00 
Ions 6.00E-02 9.96E-01 

 
Table III. Kinetic Constants for Test2 

Reaction  kf (mol/m2s)  kb (mol/m2s)  

C3S 5.20E-08 1.65E-06 

C-S-H(I) 9.50E-11 6.60E+01 
C-S-H(II) 8.00E-10 6.65E-03 
CH 1.62E-07 3.79E-02 

Ions 6.00E-02 9.96E-01 
 
 It is important to note the difference between the kinetic 
constants in Table II and Table III, and that even a small change 
in one of them can lead to a totally different behavior of the 
concentration of chemical species that conform the 
microstructure. 
 Table IV describes the results of applying the color 
channel separation and the static voxel removal (as described 
in Section 3.4) to the train1 data set.  
 

Table IV. Neighborhoods and Voxels per Color Channel 
 RED GREEN BLUE 
# of dynamic 
neighborhoods 203 489 614 

Total # of static 
voxels 10508 8061 6578 

Total # of 
dynamic voxels 1827 4401 5526 

 
4.2 Experimental Simulations 
 For our experiments, we partitioned the data into sets of 
20 simulated snapshots with 100 seconds between each 
snapshot. We call each 20 snapshot partition a lag. The training 
data consisted of 60 such lags. Since, in practice, our network 
will start with an initial set of lags generated by HydratiCA-lite, 
we trained each of the ARM’s three (red, green, and blue) 
networks using only lags 30-60 via the two-phase training 
described in Section 3.3. 
 Evaluation was performed by seeding each network with 
the first 10 lags from the test data (test1, then test2). Then the 
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neural networks are used to predict the next lag. The data input 
window then slides one lag forward in time and the next lag is 
predicted. This repeats until all desired lags have been 
predicted.  

In the following section, we evaluate: 
• the correlation between HyradiCA-lite’s simulated 

microstructure and the ARM’s predicted 
microstructure, 

• the comparison between HyradiCA-lite’s simulated 
solution composition and the ARM’s solution 
composition, and 

• execution time 

5 Results 
Fig. 3 visually illustrates the similarities between the 
HydratiCA-lite-generated images and the neural network-
generated images. The figure illustrates a series of 2-D cross-
sections at various hydration times comparing the HydratiCA-
lite outcomes for test1 (Fig. 3a) to that for the trained model 
(Fig. 3b). These snapshots indicate good qualitative 
predictability of the ARM. 

Fig. 3. Comparison of 2-D cross-sectional microstructures 
generated using HydratiCA-lite (a) and the neural network (b). 

5.1 Microstructure correlation 
Table V summarizes the correlation of the predicted 

voxels with the known test set voxels for each of the channels, 
indicating correlation between predicted microstructure and 
HydratiCA-lite generated microstructure.  

Prediction accuracy is highly influenced by the presence 
of static voxels within the neighborhoods. Recall that all 
training neighborhoods must include at least nine dynamic 
voxels. Yet, some neighborhoods have fewer than nine 
dynamic voxels and are thus counted among the “excluded 
dynamic voxels.” Nonetheless, these voxels must be predicted 

by the trained model in order to generate complete 
microstructures. This is error prone since the trained model 
does not have experience (opportunity) to learn from such 
neighborhoods.  
 

Table V. R2 Statistic for Last Step Predicted 
SET RED GREEN  BLUE  
Dynamic voxels 
(Test1) 

0.8053 0.8918 0.9191 

Excluded 
dynamic voxels 
(Test1) 

0.7222 0.7319 0.7017 

Dynamic voxels 
(Test2) 

0.8951 0.8346 0.79 

Excluded 
dynamic voxels 
(Test2) 

0.7889 0.6754 0.789 

5.2 Solution Composition 
 Global system profiles were generated and used to assess 
predictive accuracy of the trained model. Fig. 4 shows the 
global volume fractions of the solid phases for test1 and test2 
compared to the network- (the trained model) predicted volume 
fractions. These results show that the prediction degrades 
immediately. 

Fig. 4. Global outcomes for test1 (a) and test2 (b) for 
HydratiCA-lite (straight lines) and neural network (circles). 
 
 Regardless, the estimation error is not large and a correct 
evaluation and optimization of the prediction of the excluded 
dynamic voxels set would contribute to an enhancement of the 
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global prediction, as noted in Table V (test1 results). The 
correlation between predicted values and the validation set 
values for the “excluded dynamic voxels” is considerably lower 
than for the dynamic voxels (an R2 between 0.7 and 0.73 and 
between 0.8 and 0.92 respectively). Furthermore, the number 
of dynamic voxels also influences the prediction accuracy. In 
this case, the blue channel having the highest number of 
dynamic voxels exhibits the lowest error. 
 Unlike test1, test2 presented a larger amount of dynamic 
voxels in the red channel. Fig. 4b shows the global volume 
fractions computed by the HydratiCA-lite model and the 
dynamic neural network (predicted). In both cases depicted by 
Fig. 4a and 4b, the neural net predictions are in acceptable 
agreement with the results produced by the state of the art 
simulator (Hydratica-lite). 

5.3 Execution Time 
 Table VI shows the CPU wall-clock time for HydratiCA-
lite and the neural network, to predict microstructure for 
equivalent hydration times. The wall-clock time CPU speeds 
were measured on two different machines. HydratiCA-lite was 
run on an Intel Xeon 3.47 GHz multi-core processor using 
C++98. The autoregressive neural network was run on a 
Pentium 4 Xeon 2.8 GHz processor using MATLAB 2014a. 
 While this makes direct comparison of wall-clock times 
for the neural network and the CA models impossible, because 
MATLAB is deployed on a much slower machine but still 
clearly executes faster, it can be concluded that the neural 
network approach is computationally more efficient. 
 

Table VI. Timing for 11.11 Hours of Hydration Simulation 
(test1) 

Simulator 
CPU wall time for 
11.11 hours of 
hydration (hours [s]) 

Number of 
processes 

HydratiCA-lite 7.809 [28,112] 24 
Autoregressive 
Neural Network 0.01556 [56] 1 

6 Conclusions 
 These results show that the neural network (trained 
model) is able to make reasonable predictions for systems of 
unknown kinetics suggesting that there is considerable 
potential for the use of neural network models for fast 
generation of microstructure. 
 An autoregressive neural network with short memory was 
trained to generate microstructure for the hydration of 
tricalcium silicate (C3S), the major component of Type I/II 
portland cements. This project utilized microstructures 
generated by a kinetic cellular automaton, a stochastic 
simulator. Global kinetic outcomes for the CA simulator were 
shown to be consistent with a continuum solution for identical 
kinetic and thermodynamic inputs. A single training data set 
was used for network learning.  
 The trained network was found to reproduce the training 
data set well, having an R2 metric on the order of 0.98 for all 

channels. The trained model did a good job at predicting 
microstructure for different initial conditions (different number 
and location of C3S particles) producing R2 values between 0.8 
and 0.92, with the outcomes improving with the number of 
dynamic voxels to be predicted. The trained model did a 
surprisingly good job even when the kinetic parameters (rates 
of reaction) were drastically changed along with the initial 
conditions, resulting in R2 values between 0.79 and 0.9. Again, 
the predictive accuracy improved with increasing numbers of 
dynamic voxels. The neural network was able to reduce 
computation time by a nominal factor of 500× even when run 
on a slower computing platform. 
 This novel demonstration of the use of autoregressive 
neural networks for the prediction of microstructure in 
hydrating cement paste suggests that the approach is a viable 
option for dramatically reducing the computation time of 
kinetic microstructure generators. 
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