
Integrating Communication Skills in Data Structures
and Algorithms Courses

William Eberle
Tennessee Tech

Cookeville, TN USA

John Karro
Miami University
Miami, OH USA

Neal Lerner
Northeastern University

Boston, MA USA

Matthias Stallmann
NC State University
Raleigh, NC USA

Abstract—While the improvement of computer science

students’ communication skills has frequently been called for in
the literature, employers continue to feel that recent graduates
are not equipped with the writing, speaking, and teaming skills
essential in the 21st century workplace. One problem with
previous approaches is that they often teach communication
skills in dedicated courses rather than integrating them into
technical classes across the curriculum. In this paper, we report
on a multi-institutional faculty team’s efforts to integrate
communication skills into mid-level data structures and
algorithms courses as part of a larger NSF-funded project to
enact integrated reform throughout computer science/software
engineering curricula. We present an outline of assignments
designed to develop communication skills (writing, speaking,
reading, listening, and teaming) intertwined with technical skills,
and discuss our preliminary efforts to assess these efforts. Our
work reflects a general approach to incorporate communication
activities within the computer science curricula and to help
students learn and communicate technical content in academic
and professional settings.

Keywords— Data Structures, Algorithms, Communication
Skills.

I. INTRODUCTION
Based upon years of experience in industry, coupled with

direct contact with students in academia, we can emphatically
state the obvious: most computer science students do not know
how to communicate well. The technical skills new employees
possess are potentially lost due to an inability to effectively
articulate a coherent design, idea, or plan [1]. Even students
who land their dream job often have difficulty working as part
of a team or presenting ideas, either orally or in writing, to
peers, management, or customers. These difficulties lead to
frustration and an inability to make a difference in their field.

For many computer science students, communication
curricula are part of their general liberal arts education and are
typically focused on the social sciences and humanities. As a
result, students are often not learning and practicing relevant
communication skills (writing, speaking, and teaming) in their
discipline, and often do not see the importance of developing
those skills. Frequently they imagine the typical computer
science job as sitting in an isolated cubicle, trying to build the
latest video game or killer app.

As part of a National Science Foundation CPATH grant,
we teamed up with academics and professionals, including
communication-across-the-curriculum specialists from the
United States and abroad, to address this gap [2]. By having a

consistent thread of communication instruction for students
throughout their computer science education, ranging from
introductory Computer Science to Software Engineering and
Capstone courses, the emphasis on integrating communication
skills (reading, writing, listening, speaking, and teaming) with
technical content becomes a primary curricular feature. With
this approach, students not only acquire the technical and
analytical capabilities they need, but are also able to
communicate effectively and excel in their field.

This paper focuses on our work with integrating
communication skills into data structures and algorithms
courses, early in the curricula (typically after CS1). Two years
were spent designing assignments to expose students to both
technical concepts learned in class and the related
communications skills necessary to provide coherent,
complete, and professional deliverables. Faculty members from
four institutions, including a communication specialist, were
involved in creating and implementing this new curriculum,
evaluating its effectiveness, and refining assignments to make
them available to colleagues at other institutions.

Here we offer related work in Section II, and describe the
participating institutions in Section III. Section IV presents the
different assignment paradigms that were implemented to
address different communication skills. Finally, Section V
presents some reflections, preliminary evaluations, concluding
thoughts and potential future directions.

II. RELATED WORK
A number of universities have attempted to create courses

for their majors that deal exclusively with communication
skills. Northwest Missouri State University addresses the issue
of oral communication skills for their computer science
undergraduates through a seminar course [3]. Denison
University introduces communication skills to computer
science and mathematics students through a jointly led lab [4],
focusing on the improvement of their oral communication
skills. The University of Toronto created a new course entitled
“Communication Skills for Computer Scientists” [5]. Still, as
noted previously, rather than integrating communication skills
within existing computer science courses, these institutions
focus on the creation of a separate course that works solely on
students’ writing, speaking, and interpersonal communications.

More relevant to our project, Hartman introduced writing
skills into a data structures course, specifically in assignments
dealing with analysis of algorithms [6]. Based on accreditation
guidelines, Beard et al. identified the soft-skills most sought by

FIE’13, October 23-26, 2013, Oklahoma City, Oklahoma, USA.

���������	�
�������	�
	���������	����� 1503
2013 IEEE Frontiers in Education Conference

employers, and created a model for producing and evaluating
relevant activities [7]. However, the curriculum was designed
around accounting courses and not traditional computer
science. Falkner et al. present a theoretical framework for
assisting instructors with integrating communication skills in
the introductory computer science courses (i.e., CS1/CS2) [8].
They provide some guiding principles and methodologies that
can be incorporated early in the computer science curricula,
along with initial feedback from students.

A broad view of communication skills, including writing,
speaking, and teamwork, has also been supported in several
studies. Gruba and Sondergaard report on the use of a
conference run by the students in a computer science course so
that they can work on their communication skills as well as
learn technical content[9]. Students were tasked with the
responsibility to create, host, and participate in a public
research conference, offering opportunities for a wide range of
communication activities in a real-world setting. In a 2006
paper, Hoffman et al. describe activities at Quinnipiac
University to capitalize on the potential for communication
tasks to help students “write to learn” technical content, as well
as to communicate that learning [10].

A caution on curricular redesign is provided by Cilleirs,
who found a discrepancy between instructor and student
perceptions of the value of communication, particularly
writing, activities [11]. The study suggests that while students
perceive academic writing activities as beneficial in the
construction of a report, many times the actual activities used
by instructors are not perceived by students as being useful.
Such cautions are essential to consider when integrating
communication assignments to fulfill technical content
learning.

III. INSTITUTIONAL CONTEXTS
In what follows, we describe each of our institutional

contexts: overall demographics, the computer science
curriculum, and the place of data structures and algorithms
within that curriculum.

Miami University
Miami University, located in Oxford, OH, is a mid-sized
public University stressing a balance between research and
teaching. The Department of Computer Science and Software
Engineering has about 300 undergraduate majors and 20
Masters’ students, with a typical class size from 20 to 40. The
data structures course is the third programming course, while
the algorithms course is generally taken by upper classmen.

North Carolina State University
North Carolina State University, located in Raleigh, NC, is a
large, public research-oriented institution. The computer
science department has about 600 undergraduate majors and
roughly the same number of graduate students. Except for the
CS1 course, a multi-section lecture/lab combination with 30
students per section, a typical core undergraduate class has
from 60 to over 100 students. Class size presents a special
challenge to an instructor who wants to introduce
communication skills. As at Miami, the data structures course
is the third in a sequence of Java-based programming courses.

Tennessee Technological University
Tennessee Technological University (TTU), located in
Cookeville, TN, is classified as a medium-sized, public, rural
university, with a computer science enrollment of over 300
students, primarily undergraduates. Most students come into
the program with little programming experience, having had no
access to computer science classes in high school. At TTU, the
data structures and algorithms course is second in the
introductory sequence of C++ courses, with class size ranging
from 40 to 70 students.

IV. ASSIGNMENT PARADIGMS FOR COMMUNICATION SKILLS
This project defines communication in terms of five modes:

reading, writing, listening, speaking, and teaming. While data
structures and algorithms courses feature considerable
technical content, at the core they require students to design
solutions (specific data structures or algorithmic approaches) to
fit particular computing problems. This design element and the
implementation of the design quite naturally lead to a wide
variety of communication activities that mirror the types of
communication students will need to do in the workplace; thus,
the real-world element adds value to these tasks and is often
highly motivating for students.

In the following sections we discuss various paradigms or
overarching categories that we utilized to incorporate
communication skills within a data structures and algorithms
course. For each paradigm, we present a brief description of
the work-place or professional scenario for the particular
communication skills, as well as offer assignment examples.
One will note that many of the concepts we implemented are
applicable to courses other than data structures.

All of the assignment frameworks described in this paper
and detailed descriptions of the assignments (as well as others)
can be found at http://cs-comm.lib.muohio.edu/.

A. Program Design: Reading and Writing
Designing and implementing a program is probably the

most common assignment (across all institutions) for students.
They are given a problem to be solved, and they are
responsible for designing, building and testing their solution.
With this type of assignment, we incorporate two
communication skills: reading and writing.

The reading skill is manifested in giving the students a task
that requires them to do research. For example, in one
assignment, we require students to implement a random
number generator, a topic not covered in their textbook, and
thus requires they search the literature – a situation they will
encounter many times in the workplace. The particular goal is
not important; the assignment template is constructed in such a
way that the the appropriate communication skills are
independent of the data structures concepts being introduced
(e.g., stacks or queues) and thus can easily be adapted by other
instructors to their own assignments.

The writing skill is integrated into the assignment by
having the students design an application from scratch. To
provide some guidance, a design template is provided that
includes three parts for the students to populate: pseudo-code;

1504
2013 IEEE Frontiers in Education Conference

design decisions; and design issues/notes. The students limit
their design document to no more than two pages (relieving
some of the grading workload), and are required to submit
coherent, grammatically correct, well-written text. A key
concept the students must understand is that in the workplace,
an employee’s ability to convey their ideas in written form is
important at many levels: conveying design decisions to their
peers, presenting ideas to project managers, and presenting
potentially transformative ideas to upper management.

B. Omitting Details: Listening and Writing
In the workplace, not only must software engineers be able

to read technical material and write coherently, but they also
must listen well. Customers will sit down with the problem
solvers to talk about their problem(s), and it is up to the
developer to listen and ask appropriate questions.

In the listening skills paradigm, assignments are handed out
in paper form or posted on the class website, where class time
is spent reviewing the assignment and answering questions. To
integrate listening exercises, the assignment explanation
includes two verbal requirements that cannot be found in the
written description – the discussion of a feature that the
program needs to accomplish is omitted. Because the students
are told upfront that some of the required features of the
assignment will be given verbally, and cannot be found
anywhere in the written documentation that was distributed, the
students listen carefully to the program specifications and ask
questions about what they just heard.

C. Collaborative Design: Teaming, Reading, Writing,
Speaking and Listening
The ability to work in a team is arguably the most

important communication skill. Most software engineering
projects involve multiple people, from business analysts to
designers, coders, testers, managers, and customers. The ability
to communicate both internally (i.e., within your company) as
well as externally (i.e., with your customer) is vital to the
success of a project.

This paradigm can incorporate all five of the
communication skills: reading, writing, teaming, speaking, and
listening. The reading and writing skills occur through the
same avenues as mentioned previously. However, because the
initial design is done as a team, students can view and analyze
other students’ interpretations of the assignment (i.e., what they
read), as well as see and comprehend other students’ design
ideas (i.e., through their writings).

We present two examples of the collaborative-design
paradigm, used at two different universities. Both involve team
effort toward writing a design and giving an (optional)
presentation of it. Each student, working individually, is then
required to implement a design, not necessarily the one
proposed by their own team. These examples can be adapted to
many practically-motivated situations in which the data
structure(s) to be used are not explicitly given.

Example 1

The students explore the idea of using queues to create a
simulator, such as an airport runway or a car wash.

The initial design is done as a team exercise, with some
minimal time given during class for team meetings, followed
by individual implementations of their chosen design. By
working together, students will learn different approaches for
creating a design from other members of their team. The first
deliverable, an initial design document, is submitted for a
grade about one week after receiving the assignment. This
requires students to craft a design before implementing a
program – combatting the common tendency to create a
design as an afterthought.

After the teams have submitted their design document, one
class period is spent on 5-7 minute design presentations. This
exercise incorporates speaking and reinforces listening in a
different way. To get a grade for their presentation, each
student must present some aspect of their team’s design. This
is a light introduction to public speaking, as each student only
gets about 1-2 minutes to talk. In addition, because students
are standing in the front of the class with their team, it is less
intimidating as they have a support group for answering any
questions from the class. Listening is reinforced because
students are permitted to use any design they want for their
actual implementation, so by listening and paying attention to
other teams’ designs, they may find a design choice they
prefer better than their own. While not a gradable aspect of the
assignment, it is definitely motivating to the students to know
that they can use another team’s design.

After working as a team on an initial design document
(and presentation), the students are then on their own to
actually implement a solution. And, as mentioned above, they
can choose to use their team’s design, another team’s design,
or their own individual design.

Example 2

The students explore an approach to searching and
replacing data in a text file as motivated by the following
situation: Suppose that the only strings you are allowed to
replace are words – contiguous strings with no embedded
spaces or punctuation. A situation like this might occur if you
want to rename variables in a program.

As in the previous example, there are two phases: a team
design followed by individual implementation. Because this
assignment is more complex – non-trivial interaction between
data structures and more design decisions – the allotted time
for the design document is three weeks, with an additional
week for preparing the presentation. Team dynamics thus
becomes a more prominent factor. An additional feature in this
assignment is a test plan, submitted along with the design. In
the workplace, developers and testers must often communicate
about designs that will integrate a new feature (e.g., the word
search/replace added to an editor). A test plan is a critical
aspect of the communication between a requirements engineer
and the designer. It ensures that each understands the expected
behavior of the software under a variety of circumstances

D. Justifying Choices: Reflecting and Writing
As teachers, we hope our students learn from their mistakes

and apply their knowledge to solving new problems. As we use
exams to gauge students’ understanding of course material,

1505
2013 IEEE Frontiers in Education Conference

programming assignments are intended to see if they can apply
what they have learned in the construction of a piece of
software.

After students have crafted designs as members of a team
and read (or heard presentations of) the designs submitted by
others, their learning can be further enhanced if they are
challenged to compose a design document individually. For
this task to be successful, it is important that the instructor
evaluate the design before an implementation (if any) is
submitted. Students are, in effect, being asked to make
judgments about their own work and that of others and to apply
these judgments to their subsequent work. For instance, in our
examples, students are successful when they understand the
pros and cons of different data structures. Reflection on prior
experience with communication skills, particularly writing, but
also speaking, is essential for continued improvement of these
skills in the workplace. Naturally the proposed paradigm is
applicable in any context where students have had opportunity
to interact with the work (writing or speaking) of their peers.

E. Experimental Comparison: Writing
The choice of an appropriate data structure or algorithm is

often based on carefully crafted experiments using relevant
problem instances. Students can be asked to apply competing
algorithms (or data structures) to large instances of the same
problem, drawn from both real and randomly generated data. In
one example assignment, students are asked to compare six
different algorithms for counting the number of occurrences of
each word in a text. The assignment provides a collection of
large text files, drawn from articles and books, and a generator
for random text files with various characteristics. The writing
component of this assignment is the creation of a report that
outlines the scope of the experiment (algorithms and instances
used), the results obtained and the interpretations thereof (e.g.,
does theoretical analysis predict actual run-time?). Creating
useful and evocative charts – difficult even for experienced
writers – is an important component of this type of assignment.

F. Creative Endeavors: Reading, Writing, Teaming and
Speaking
In addition to the traditional classroom modes of gauging

students’ communication skills, students can demonstrate
various communication skills through creative endeavors.
Exercises include using media such as blogs and wikis to allow
students to implement someone else’s design (reading and
comprehension) or communicate within their team (writing and
teaming).

In one example, large class size makes it infeasible to
assign individual (i.e., non-team) design assignments. Thus, a
twist on the design presentations is employed using YouTube.
Students are directed to post a video, limited to three minutes,
containing a discussion of their design. Advantages of this
approach include: (1) allowing students to work on their
speaking skills in a non-intimidating environment; (2)
prompting students to learn how to use a popular media web-
site; and (3) allowing instructors to watch the design
presentations at their leisure in a short amount of time.

G. Organization and Clarity Through Proofs: Writing
In one institution’s theoretically-oriented algorithms

course, we assigned problems as much for the writing
challenge as well as the technical challenge. Correctness proofs
and problem reductions tend to work well: such proofs
frequently address a single concept, allowing the student to
better focus on a well-written proof. The nature of many proofs
dictate a natural template for students once they have solved
the problem, and this structure simplifies the problem of
providing feedback. It is easy to identify and comment on a
failure to mention the crucial point, or to build steps of the
proof in a logical and complete progression.

NP-Hardness reductions provide a particularly good
example of how proofs can be effectively used to develop
writing skills. The central element of such a proof is that of
reducing one problem to another in polynomial time, i.e., to
show that a polynomial-time algorithm for problem A implies
one for problem B. To make this main idea more accessible to
students we ask them to think of the reduction in terms of an
implementation: we suppose the existence of a (black-box)
implementation of an algorithm for A and ask them to design
an algorithm for B using it. Given carefully chosen problem-
pairs (Partition to Sum of Subsets being a good place to start),
even the weaker students can usually grasp the idea.

The more challenging part of this exercise, one that
involves communication skills, is for students to prove that the
reduction is correct. They need to prove two different results
(that the proposed transformation never results in either false
positives or false negatives). Within each proof direction, the
student will need to clearly state the central point and support it
with arguments – not technically difficult, but challenging for
the writer to lay out clearly. The writer must avoid conflating
distinct concepts (leading to lack of clarity); leaving out one of
the two arguments altogether; or failing to properly structure
one or both of the arguments (e.g., neglecting to explain what
they are proving). Providing clear, useful feedback is usually a
simple task: the almost mandatory structure of the solution
allows the grader to easily identify problems with the writing
and explain why these problems inhibit clarity.

V. REFLECTION AND EVALUATION
While systematic evaluation of the success of our curricular

and pedagogical efforts was not always possible, we offer in
this section a combination of reflection, evaluation, and student
impressions (from survey data) as a starting point for revision
of our assignments. We structure this section around the
particular communication modes and tasks we implemented.

A. Reflection and Writing Activities
Design and Experimental Comparison Documents. Design
documents are pervasive throughout the curriculum and in the
workplace. Data structures and algorithms courses often
present the first situation where design focuses on more than
the implementation of a simple algorithm or a single C++/Java
class. Among the design documents submitted (for Example 2,
Section IV.C), most lacked a good overview, consisting
primarily of detailed pseudo-code and/or detailed UML. These
students had learned UML in a previous course but had only

1506
2013 IEEE Frontiers in Education Conference

limited exposure to high-level pseudo-code. Writing a well-
organized overview is the most important, and apparently the
most lacking, skill. One could use examples of excellent work
from a previous semester – one student came up with a
professional quality document – as models, provided that the
assignments were not too similar. Models addressing the
appropriate level of competence are harder to craft or find in
the literature.

The experimental comparison assignment imposed a
challenge not normally encountered in the curriculum, yet
extremely important in the workplace: presenting data in the
form of tables and charts with explanations. The primary issue
with the students’ charts was scaling: lines frequently ended up
on top of each other. Tables were often hard to read; they did
not line up properly or presented far too much detail. In
explanations of the data there were two issues: misguided
explanations (technical) and poorly organized blow-by-blow
descriptions (writing). Future uses of similar assignments
might be preceded by examples from the literature, where both
good and bad examples of data presentation abound.

Proof-based Exercises. In the proof assignments there was a
core set of writing-related problems that reflect specific
problem types in the student’s general writing ability.
Examples include:

Failure to explain premise (poor writing structure): The
average student frequently fails to explain what they are
proving. Presenting a clear thesis is necessary in good writing;
in identifying this problem we hope to help students organize
their thoughts and lay a proper foundation for their writing.

Excessive use of notation (poor presentation): Students
confuse “proof” with “algebra,” apparently believing the latter
is mandatory in the former. We emphasize that notation
should be used only to facilitate understanding (as short-hand
for concepts too cumbersome to write in prose): a proof
without Greek symbols is acceptable. Making students aware
of overuse of notation forces them to focus on clarity and on
the use of appropriate tools.

Failure to connect ideas (poor logical presentation): Students
often make logical jumps or fail to explain connections they
have correctly made in their own minds. This problem
becomes easier to both spot and explain in proofs than essay-
based writing, allowing us to provide useful feedback.

Superfluous statements (problems with concise writing): It is
not unusual for a student to attempt to say the right thing by
way of saying everything. Again, in a mathematical proof it is
generally easy to spot irrelevant comments and provide useful
feedback.

The above observations about proofs are based on an
upper-level algorithms class, but the ideas apply also to data
structures classes that incorporate smaller proofs into project
assignments. For example, students may be asked to prove
assertions related to the correctness or runtime of a program.

B. Reflections on Speaking Activities
On the whole, both the formal in-class presentations and

less-formal, student-made videos were successful in helping
with speaking skills. For the collaborative design assignment
most groups gave what appeared to be well-rehearsed
presentations, given either by one group member or several.
Almost all presentations adhered to the time limit (imposed in
Example 2 of Section IV.C), allowing for a lively question and
answer period.

We found that most of the students enjoyed the YouTube
speaking exercise and were sometimes very creative in the
process. Submissions ranged from voice-narrated computer
animation to a “60 Minutes” television show parody. The ease
of using video equipment, usually embedded in their laptops,
made this a fun and easy assignment for the students and an
effective vehicle for improving communication skills.

C. Reflections on Teaming Activities
In capstone courses, teams are often based on a set of

complex criteria (e.g. Layton et al. [12]) but this approach is
unnecessarily time-consuming for our purposes. In our case,
team assignments were based on a ranking of students with
respect to performance earlier in the semester, using one of two
strategies to form groups: (1) including a range of student
ranks in each group; or (2) grouping students by rank [13].

In using strategy (1), we hoped that weaker students would
learn from stronger ones. This outcome was observed directly
in a few cases. Of 18 teams of size three or four students, most
appeared cohesive (based on student peer evaluations and
instructor observation). However, three of the teams had one
member who contributed little or nothing and another team had
a member who was completely unable to contact the other
three, and therefore ended up doing the assignment alone.

One of the authors had used strategy (1) in an earlier
semester, but switched to strategy (2) based on the work of
Braught et al. [13]. The justification is that a group of good
students will be driven to produce even more, while a group of
poor students will realize that they need to step up if they want
to succeed. After making this change in team dynamics, the
instructor noticed superior work from the top students – they
reached out and tried interesting ideas – while most members
of the bottom groups actually contributed to their team’s
efforts, sometimes with surprisingly good results. One
disadvantage of the latter approach, observed in a context
requiring more complex tasks, is that the poor students make
little, if any, progress.

All communication skill assignments presented grading
challenges. We relied solely on peer ratings for assessment of
teamwork. Speaking was only lightly graded: any reasonable
attempt resulted in credit. Thus, most of the grading burden
focused on writing. One of the authors advertised a rough
breakdown to the students (10 points for each of several
aspects), but was then faced with the difficulty of deciding
between, say, a 4 and a 7; furthermore, each such decision had
to be justified. A more reasonable approach would be a simple
checklist of items each worth only 1 or 2 points, such as “a
table that summarizes data effectively.” This would obviate the
need for justification and allow the instructor to focus instead

1507
2013 IEEE Frontiers in Education Conference

on constructive feedback: positive encouragement and
suggestions for improvement.

D. Students’ Reflections on Communication Activities
While logistics and a lack of resources precluded

comprehensive assessment of this project, we did conduct an
assessment of student perceptions of their communication
skills before and after a team design assignment in one course
– see Section IV-C. Students were given an attitude survey at
the beginning and end of the semester; 32 out of 61 students
participated. The questions asked students to rate their ability
in each of the following: (a) reading technical specifications,
including assignments, documentation, etc.; (b) writing
technical documents, including descriptions of algorithms and
experimental results, designs, etc.; (c) giving audience
appropriate presentations (speaking); and (d) working
effectively with a team of peers to accomplish a common goal
(teaming). Ratings ranged from very good (5) to very poor (1).

On average, the students rated themselves more positively
at the end of the semester in three of the four categories: the
average scores increased from 4.09±0.13 to 4.25 ±0.13 for
reading, 3.50±0.12 to 3.75±0.11 for writing and 3.66±0.14 to
3.78±0.14 for speaking. (The ±’s here indicate standard error.)
Teaming was a different story: there the average rating dropped
from 4.19±0.13 to 4.16±0.12. Students were more confident
about their teaming ability at the beginning of the semester
than about any other skill. The lack of improvement might
reflect the fact that nine students (in the sample of 32), who
rated themselves more poorly at the end, were predominantly
ones whose teams fared badly. The presence of carefully
designed and positively regarded team assignments in the
second semester Java course and an emphasis on pair
programming in the introductory course could explain the
initial high confidence in teaming ability. Clearly more careful
attention could be paid to the teaming aspect of our proposed
assignments.

Prior experiences in these skills were elicited with the
prompt, “Please list the courses (including CSC 316) and/or
industry settings (e.g., co-ops) in which you practiced [reading,
writing, speaking or teaming skills listed in detail].” Only 21 of
the 32 students reported having done reading in CS1 even
though the prompt specifically mentioned “assignment
specifications.” The number increased to 31 for CS2. Prior
writing experience was reported by 5 for CS1 and 23 for CS2.
Teaming went from 8 in CS1 (pair programming is a part of
that course) to 27 in CS2, where teams of four or five are now
standard. The significant prior (presumably positive) teaming
experience explains the beginning-of-semester confidence (and
later drop thereof) with respect to that skill. As expected, there
were only a few reports of speaking experience in CS1 and
CS2 – 10 in the latter. But nine additional students reported
speaking experience in industry, English courses and/or other
CS courses. Clearly, prior experience was a significant factor
in the better than average initial confidence ratings of students
for four of the communication skills.

VI. CONCLUSIONS AND FUTURE WORK
The central point of the work described here is to bridge the

gap between CS1 courses, where communication activities are
typically low-stakes, and software engineering and capstone
courses, where communication is a major part of course
content. We address this transition via a collection of
assignment paradigms that can be used to seamlessly integrate
communication skills with technical content.

The activities we describe are only starting points for
integrating communication skills into the computer science
curriculum, generally, and data structures and algorithms
courses, specifically. We do acknowledge (and have
experienced) that large class sizes, last-minute teaching
assignments, and skeptical students (and colleagues) are
challenges to this work. However, we strongly feel that
inducing students to develop the communication skills required
of professionals along with the technical content of these
courses is well worth the time and effort.

In future semesters, we imagine several possible
directions:

� Tracking actual improvement in communication skills as
the semester progresses and/or in follow-on courses.
There was an attempt to match the pre/post attitude
survey in the course at one institution with another
attitude survey in the capstone course, but there was no
comparative evaluation of actual communication skills.
Even the attitude survey did not allow for adequate
comparison between students that were exposed to the
above-mentioned assignments and students who were not;
the questions were not coordinated and it could not be
determined how many students (if any) took both surveys.

� Evaluating the impact of communication assignments on
technical skills. There is a legitimate concern that these
assignments require additional class time and/or reduce
the portion of a student’s grade dependent on technical
competence. Anecdotal evidence suggests that increased
emphasis on communication skills neither decreases nor
increases technical competence. A more rigorous
assessment of this observation would be useful.

� Using professional-quality examples of work
demonstrating the communication skills. High-quality
student work from previous semesters (anonymized)
could serve this purpose. Speaking and teaming present
difficult challenges. In case of the former, industry
advisers have suggested use of examples provided by
them; the process of developing a functioning team would
probably have to be taught and supervised by a specialist,
as is done at one of our institutions.

ACKNOWLEDGMENT
This work was funded by NSF CPATH-II Awards CCF-
0939122 and CCF-0939081. Opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
the National Science Foundation (NSF).

1508
2013 IEEE Frontiers in Education Conference

REFERENCES
[1] National Commission on Writing. 2004. Writing: A Ticket to Work or a

Ticket Out: A Survey of Business Leaders. New York: College Board.
http://www.collegeboard.com/prod_downloads/writingcom/writing-
ticket-to-work.pdf.

[2] M. Carter, M. Vouk,G. Gannod, J. Burge, P. Anderson, M. Hoffman.
“Communication Genres: Integrating Communication into the Software
Engineering Curriculum,” ICSE, 2011.

[3] G. McDonald and M. McDonald,. “Developing Oral Communication
Skills of Computer Science Undergraduates,” SIGCSE, 1993.

[4] J. Havill and L. Ludwig. “Technically Speaking: Fostering the
Communication Skills of Computer Science and Mathematics Students,”
SIGCSE, 2007.

[5] L. Blume, R. Baecker,C. Cllins, and A. Donohue. “Communication
Skills for Computer Scientists Course,” ITiCSE, 2009.

[6] J. Hartman. “Writing to learn and communicate in data structures
course,” SIGCSE, 1989.

[7] D. Beard,D. Schwieger, and K. Surendran, K. “Incorporating Soft Skills
into Accounting and MIS Curricula,” SIGMIS-CPR, 2007.

[8] K. Falkner and N. Falkner. “Integrating communication skills into the
computer science curriculum,” Proceedings of the 43rd ACM technical
symposium on Computer Science Education, 2012.

[9] P. Gruba and H. Sùndergaard. “Constructivist Approach to
Communication Skills Instruction in Computer Science,” Computer
Science Education, 2001.

[10] M. Hoffman, T. Dansdill, and D. Herscovici. “Bridging Writing To
Learn and Writing in the Discipline in Computer Science Education,”
SIGCSE, 2006.

[11] C. Cilliers. “Student perception of academic writing skills activities in a
traditional programming course,” Computers & Education, 2012.

[12] R. Layton, M. Loughry, M. Ohland, and G. Ricco. “Design and
Validation of a Web-Based System for Assigning Members to Teams
Using Instructor-Specified Criteria,” Advances in Engineering
Education, 2010.

[13] G. Braught, J. MacCormick, and T. Wahls. “The Benefits of Pairing by
Ability,” SIGCSE, 2010.

1509
2013 IEEE Frontiers in Education Conference

