
Computer Science Widening the STEM Education Spectrum 
 

Christopher J. Morack 
Department of Computer Science 

Tennessee Technological University 
Cookeville, TN, USA 

cjmorack42@students.tntech.edu 

William Eberle 
Department of Computer Science 

Tennessee Technological University 
Cookeville, TN, USA 
weberle@tntech.edu

 
 

Abstract— Science, Technology, Engineering and Mathematics 
(STEM) education is slowly becoming an important part of 
American culture.  STEM educators try to promote ‘hands on’ 
science, where students can actually interact with and see the 
results of their work.  Unfortunately, not all paths of education 
for STEM related fields can have exciting, interactive teaching 
methods.  At the Millard Oakley STEM Center, we have taken 
advantage of the interactive experience in our planetarium show.  
In this paper, we take an in-depth look at the Definiti Theater 
System and the software that runs it, Digital Sky 2.  This 
software package is created by Sky-Skan and is considered to be 
the standard for many new planetariums across the country and 
beyond.  We take the software in new directions by building new 
elements through the Sky-Skan scripting engine and by also 
exploring its 3D engine for creating a novel experience.  The 
primary purpose of this paper is to provide a roadmap of 
observations and enhancements for other educators that wish to 
improve the learning experience of students and visitors to their 
planetarium. 

 

Keywords—STEM, education, planetarium, Digital Sky 2, 3D 

I. INTRODUCTION 
The goal of STEM education centers is to engage students 

of all ages enough so that they will find an interest in a STEM 
career path.  The scientists, engineers, and mathematicians of 
tomorrow are hidden among the children of today.  Any 
moment of a child’s life could be that special moment that 
shapes who they will become.  To try to capture the minds and 
interests of students, STEM programs employ a hands-on 
technique to their offered programs [1].  This approach sets a 
STEM program apart from other programs.  Instead of students 
simply learning about the laws of physics, they will learn about 
them as well as build a rocket with which they experience 
physics in action.  They can then compare and talk about their 
results, and what they observed and experienced. 

It is in this area where programs like astronomy shows tend 
to fail.  As the very name implies, it is a “show”.  Regardless of 
how knowledgeable or enthusiastic the program host may 
deliver the show, it is still the same material.  When a student 
experiences the show, they know their peers will see the exact 
same thing, outside of the differing questions other students 
may pose.  Few students will talk about their experiences in an 
astronomy theater with their peers because they all have the 
exact same experience. 

In our previous shows, we used minimal 3D assets and 
relied heavily upon the speaker to convey what various dots 
and circles and lines on the screen meant.  In shows that did 
feature 3D models, none of the models were original or custom 
built to showcase that particular show.  The shows were built 
only around what was pre-existing within the system, and 
limited the creativity of the developers.  Also because a show 
was ‘a show’, the thought never occurred to the developers to 
allow the on-screen action to be directed by the students. 

To better achieve the expected STEM experience from our 
existing astronomy program, a redesign of the previous 
creation methods was necessary.  What we desired was a new 
program that could support the hands-on approach to learning 
through a virtual experience.   Ideally, the program could 
involve numerous choices, each with different events and 
moments.  In order to harness their interest and spark 
conversation outside of the show between students, events 
needed to be different and interesting – or at least different 
enough that each student could have his or her own story.  Key 
events would tie back together, so the goal of the educational 
material would still be achieved, but additional material would 
be different from student to student. 

This paper will discuss the topics associated with not only 
the discovery process and the angling of the concepts of a new 
interactive astronomy program, but also delve into the details 
of the program itself.  The topics will include methods of 
setting up interactive features using Sky-Skan’s Definiti 
planetarium software, Digital Sky 2, to achieve a fully 
interactive environment [2].  Pitfalls, workarounds, and tips 
encountered by our team will be discussed at each step.  While 
much of the paper will be covering the Digital Sky 2 software, 
the basic concepts used can cover a wide variety of software 
where an educator may be having a difficult time building 
interactive features for their students.  The goal of this paper is 
to provide a roadmap for transforming a non-interactive 
presentation into something that will not only further STEM 
objectives, but also will capture the attention of students. 

II. RELATED WORK 
For our approach to be useful to others, we researched a 

myriad of ways to implement the necessary interactive 
features.  However, up until now, little work has been done in 
this area.  We were able to discover some of the simpler 
features through work by others by reading the private forums 
associated with Digital Sky 2 purchasers.  To the best of our 

978-1-4673-5261-1/13/$31.00 ©2013 IEEE 1329
2013 IEEE Frontiers in Education Conference



knowledge, more complex functionality such as asset creation 
and implementation has never been fully explained or well 
documented. 

Planetarium web pages across the United States prove they 
follow a standard approach to their astronomy centers.  They 
tend to feature a scripted planetarium segment and a non-
interactive, pre-recorded movie.  Generally the show’s 
commentary is prerecorded, occasionally by a person of note 
within the science community or an author.  Any interactive 
features available by the system are either unused, or used in 
such a way that there is no dedicated show built specifically 
around those capabilities. 

One such example of this is The Morehead Planetarium and 
Science Center at the University of North Carolina at Chapel 
Hill [3].  The shows look spectacular, but the experience is the 
same for everybody.  Since there is limited or no interaction 
with the audience, the experience is an educational movie. 

While most planetariums follow the route of the non-
interactive feature, the Lawrence Hall of Science’s planetarium 
at the University of California, Berkeley does provide an 
interactive experience [4].  They also use the Digital Sky 2 
software – the same software that we use at the Millard Oakley 
STEM Center.  In this case, the show is hosted by a real person 
and the host can answer questions posed to them and direct the 
screen to whatever object a person may want to see.  This type 
of feature is fully within the operational boundaries of the 
Digital Sky 2 software, but it still does not fully realize the 
goals presented in this paper. 

In short, to the best of our knowledge, what we are 
presenting in this paper is novel.  For most planetariums the 
word interactive describes a show run by a live commentator.  
The commentator controls the system in a pre-existing way, 
such as to view a certain object.  The commentator has control 
of the navigation mode already built into their software.  This 
method is useful, but it will not grab the imagination of an 
audience and pull them into a different world where they are in 
the driver’s seat.  In fact, this interactive method is traditionally 
how we have used the software in the past.  This level of 
interaction lacks the excitement of what we are aiming to do 
with our interactive story approach to education.  We believe 
that the Digital Sky 2 software has a great deal of ‘interactive 
potential’.  So, our goal is to capture the essence of what 
‘interaction’ means in an educational setting, and refocus it into 
something that will grab students’ attention by literally pulling 
them into the story. 

Through a system such as Digital Sky 2, we have the 
capability to create a lasting, educational experience.  
However, the capability to do that is not simply inherent within 
the software in and of itself.  There are certain techniques, 
which when applied, have helped to move our presentations to 
another level of excitement, where the student can literally take 
part in an adventure driven by education. 

In other words, our goal is to not just show a movie.  We 
want to surprise the audience with a story where they are the 
author of something exciting.  The following is our proposed 
approach to implementing a truly interactive planetarium show, 

with detailed steps and examples that will allow other 
practitioners to do the same. 

III. PROPOSED SOLUTION 

A. Storyboard / Event Flowchart 
Before beginning to build a show, it is important to answer 

the following questions:  What do you plan to teach?  What do 
you plan to talk about?  What do you want to start with and 
what do you want to end with?  Even for practitioners who are 
not using the Digital Sky 2 software package, this step is 
critical to any feature event, whether it is interactive or non-
interactive.  It is easy to skip this step and dive directly into 
building a vision, but this haphazard approach will often result 
in a confused, incoherent project.  To get around future 
difficulties, it is good practice to create a storyboard at the 
beginning of development.  A storyboard is not a new concept, 
and is something many people familiar with the entertainment 
industry will recognize [5]. 

 
Figure 1: Example Storyboard Flowchart 

 

To implement one’s strategy, one must storyboard ideas 
using a medium that is easy for all to view and edit freely.  For 
our purposes, we storyboard our ideas on large white boards.  
Ideas undergo numerous changes until brain storming is 
finished.  Our initial storyboard consists of a flowchart of 
topics we want to cover, and the amount of time we want to 
take talking about each topic.  Lines connect the different 
branches the feature will take (Figure 1). 

Since our feature will have key topics we want to cover, we 
use a ‘diverge and converge’ system.  Each major topic will be 
talked about, followed by an ancillary topic the students would 
choose as a next destination.  Those destinations would 
ultimately return to our main topic again.  This initial flowchart 
storyboard not only gives us a way to ‘see’ how the show will 
play out, but it also gives us rough estimates for timing.  These 
estimates can be taken into action for writing the speaking 
portions of the show. 

Additional work with a storyboard may be necessary to 
achieve the desired look and feel.  It may be necessary to draw 

1330
2013 IEEE Frontiers in Education Conference



out individual scenes, complete with timing for smaller events, 
including the timing for audience participation.  For each 
individual event in the flowchart, we follow the standard 
method of storyboarding.  We draw comic book-like panels of 
pictures describing what occurs.  This helps us further 
recognize assets we need to create, as well as what we would 
say and when. 

With the storyboard visible to the development team, all 
creative thoughts and ideas are never lost.  Since a 20-minute 
show may take a year to develop, preserving ideas for later 
implementation is a critical key to success.  The storyboard 
also provides a convenient metric to measure the completion 
percentage of the overall presentation. 

B. Understanding the Model & Brief History 
 Creating models is necessary for custom content, and 
understanding the format of the model file is necessary to 
create professional looking models.  Digital Sky 2 uses 
DirectX models in the .x format [6].  This is an older and 
depreciated format, and to the best of our knowledge no fully 
compatible Digital Sky 2 model exporter exists.  For certain 
features, such as applying shaders, additional model editing 
must be done. 

 We initially used Blender to export our models to the 
DirectX format [7].  In our version of Blender, we enabled the 
ability to export to the DirectX format through the Add-ons 
menu.  However, we discovered some issues exporting certain 
materials, and creating animations was difficult as well.  This 
led us to look for alternatives. 

 What we use now is Autodesk 3D Studio Max 2012 [8].  
Autodesk 3D Studio Max is very expensive to buy, but for 
students it is free to use.  Although we are not able to build 
DirectX shaders compatible with the Digital Sky 2 software 
using the shader creation tools within 3D Studio Max, we are 
able to resolve animation issues and ease of exportation.  Sky 
Skan also uses 3D Studio Max to create their content, which 
further justifies our selection of this software.  However, 
between the version Sky Skan uses and the current version of 
3D Studio Max, the ability to natively export to DirectX 
models has been removed. 

 Therefore, since we did not want to lose the great modeling 
and animation features present in the newer versions of 3D 
Studio Max, we had to locate a third party exporter.  After a lot 
of failed attempts, we found Pandasoft’s DirectX Exporter [9].  
This exporter covers all of the bases, including animation, and 
even allows for direct export of models with a basic texture 
map material without the need to edit the .x file. 

 Digital Sky 2 can be very picky if certain modeling actions 
are taken.  If an object is not modified at the sub-object level, it 
may be deformed in the Digital Sky 2 environment.  
Translating, scaling, and rotations of objects performed outside 
of a sub-level of editing can all lead to these deformation 
issues, even if the model looks normal inside the modeling 
program. 

 The Digital Sky 2 environment can also support models 
with a very large file size.  The International Space Station 
model which comes with Digital Sky 2 is a very detailed, large 

model.  The model can be displayed on the screen with no 
performance loss. 

 However, it is also important to know that when working 
with large file sizes, the development team will need to plan 
ahead on how to load these assets, since it will take time for a 
larger model to load than a conservatively smaller sized model.  
If there are also large textures associated with the model, this 
will also have an impact on file loading times. 

C. Landscapes, Flat Surfaces, & Billboards 
 One of our major goals with the project was to create land-
based scenery and events.  This was a challenge due to the high 
field of view of our system.  Flat objects were distorted to look 
curved.  This resulted in a fisheye appearance to all of our 
content, and while it was acceptable for space scenes, it ruined 
landscapes and anything else we wanted to look ‘flat’.  Digital 
Sky 2 is set with a field of view associated with the connected 
display, and for us this editable value is set at around 170 
degrees.  However, it is a system-wide setting, and cannot be 
set on a per-scene basis.  This led us to the conclusion that 
adjusting this setting will harm all our previously created 
shows, and was not an option. 

 Our billboard graphics, which are .JPG or .GIF images put 
directly onto the screen, also suffered from the fisheye 
problem.  The further towards the top of the screen we put an 
image, the more distorted it was.  We noted, that if we set a 
billboard low at the horizon, which was the bottom of the 
screen, it was flat, albeit cut off by the screen itself. 

 We discovered ideal ways to combat this distortion.  The 
ideal display to use for billboards is panoramic.  To shift a 
billboard upwards on the screen without distortion requires two 
values on two different lines to be changed.  On the billboard 
setup line, the Y-Offset has to be an increasing positive value, 
and the display line has to keep the elevation/declination 
setting to a value close to zero (Figure 2). 

 
Figure 2: Top – No Y-Offset; Bottom – Y-Offset Used 

 

1331
2013 IEEE Frontiers in Education Conference



 Each billboard has different settings, since the size of the 
associated image is different.  The Y-Offset has a maximum 
value it works at, so juggling between it and the 
elevation/declination value is required for an optimum image.  
Discovering that images placed along the horizon have very 
little bending to them helps to pave the way for landscape 
creation.  If one creates a landscape by placing it at the base of 
the screen and pointing the camera ‘skywards’, the landscape 
will remain flat along the bottom of the screen. 

 Unfortunately this technique does not meet expectations 
when we want the camera to look at the landscape itself.  When 
rotating the camera ‘side to side’, the fisheye effect is not very 
obvious.  However, when rotating the camera ‘up and down’ 
the effect is dizzyingly prevalent.  Due to the field of view 
setting, the screen is viewing an entire hemisphere. 

 Once one fully understands how the camera acts because of 
the field of view, one can come up with strategies to get around 
it in their models.  What we discovered to work best was to 
create the scene we wanted, and then bend and distort it 
afterwards.  By bending and extending the edges of the model 
to curve inwards, the camera will not be able to see the end of 
the landscape.  It is also important to bend the model around 
where camera is to be located. 

 To build a good centerpiece terrain, it should be modeled 
from ‘strips’ of terrain, then overlapped them from the 
camera’s point of view.  This gives a good effect for distance.  
These strips should taper larger towards the edges to prevent 
them from appearing to shrink as they near the edges of the 
fisheye camera (Figure 3).  This technique provides for 
excellent panoramic scenes. 

 
Figure 3:  Terrain Bending for Camera Compensation 

 

 When building a scene it is important to know how the 
camera will act and what it will show to the audience.  The 
design of the model will need to be based entirely how it is 

seen by the camera.  Once a scene has camera compensation 
bending applied to it, going back and making changes can be 
difficult, and even impossible for complex scenes. 

D. Scene Animation 
 Digital Sky 2 allows for at least two types of animations:  
bone-based animations and the more standard rotation and 
translation animations.  Bones animation involves the object 
being rigged with bones to animate it, and allows for more 
realistic animation [10].  The rotation and translation type 
animation allows for full objects to be rotated and translated, 
and may be useful for solid objects moving from one location 
to another location.  Animations are built by setting keyframes 
for actions, which are fully implemented by Digital Sky 2. 

 For most complex animations, separating a static 
background model from an animated model is very challenging 
using Digital Sky 2 due to its own system complications.  The 
primary reason to have two or more separate models in an 
animation is due to how the shader system works in Digital 
Sky 2.  If a model is animated using bones with a basic bitmap 
applied to it, the bones will animate as expected.  If that same 
model has a shader applied to it, the model will ‘break apart’ at 
the polygon level as the bones animate.  This means that 
instead of having the polygons bend and shift to accommodate 
the movement of the bones, they are instead static and unable 
to shift, causing the model to literally rip apart at the seams as 
it animates.  What this results in is static models that can have 
nice looking shaders, but any animated model must use only 
standard bitmaps.  Being able to mix an animated, bitmap-only 
model over a nicely shader-enabled static model would be 
useful, however, actually getting this to work proved to be 
more of a challenge than we could afford given our time limit 
for the project.  Mixing static and animated models together is 
possible, but it takes a considerable amount of work, and any 
changes to the animation or static scene has adverse effects on 
the Digital Sky 2 settings and positions of the models. 

 For optimum control over a fully animated scene, it is best 
to keep the animating objects in the same model as their 
background.  All of the scene objects must also be connected 
together as a single object, or there may be unexpected results.  
With a single large object, the only way to animate it is by 
using the bones system.  Surmounting object interaction and 
positioning is difficult, and using this technique for precision 
will save countless hours for different animations. 

 It is important to keep in mind that Digital Sky 2 mirrors 
everything when it loads it into its environment - just like 
models.  So an animation of something going left will go right 
inside the Digital Sky 2 environment.  This can be 
circumvented by mirroring the scene prior to exporting. 

E. Applying Bitmaps and Shaders 
 Creating a quality model is a two-part event.  First, a 
detailed model must be developed, and second, good bitmaps 
and shaders must be applied to it.  Digital Sky 2 allows these 
features with shader support available for non-bones animated 
objects.  Getting a basic bitmap on an object requires nothing 
more than exporting the bitmapped model with the Pandasoft 

1332
2013 IEEE Frontiers in Education Conference



exporter.  Applying a shader to the model requires significantly 
more work. 

 To apply a shader to a model, first one must export the 
model as normal using the exporter software, like Pandasoft. 
The shader file itself will need to be created separately.  Shader 
files have a .fx extension, and pre-existing .fx files can be 
found within Digital Sky 2 to use as a starting point [11].  
Digital Sky 2 supports many types of shaders that are not 
normally available within the default .fx files, such as self-
illumination.  These shader additions can be built into custom 
.fx files if necessary for a particular model. 

 With either a custom shader or a pre-built shader from 
another Digital Sky 2 file, one must then connect the shader 
with the model.  This requires editing the .x model file.  To 
best understand how this works, one can investigate the 
Shuttle.x and StandardFX_ds2.fx files which come with Digital 
Sky 2.  StandardFX_ds2.fx by itself can handle normal 
mapping, specular mapping, and diffuse mapping techniques. 

 To apply the .fx file to the model, open the .x file in an 
editor and search for MeshTextureCoords, locate the texture 
method above that block.  If this is a fresh export using the 
Pandasoft exporter, there will only be the bitmap pointing to an 
image file.  In order to get the StandardFX_ds2.fx shader 
applied within model, replace the entire bitmap block with the 
contents of the block in the same location as shown in the 
Shuttle.x file.  To use custom bitmaps, change the file names 
pointed to in the Shuttle.x block. 

 If the model is using multiple objects inside of a single file, 
each object will need to have the bitmap block replaced with 
the associated shader block.  This can become time consuming, 
but it is possible and it will allow for different objects within a 
scene to use different shaders.  Good usages for multiple 
objects in a single file would be for such things as a space 
station and a space ship docked together.  Instead of trying to 
wrestle with the Digital Sky 2 environment for precision, 
simply merge the two objects into a single file and position 
them as a single model. 

 Another important note concerning mapping and Digital 
Sky 2 is that any model will be mirrored once it is inside the 
environment.  This means that readable text inside the 
modeling program will be backwards inside of the Digital Sky 
2 environment.  This issue can be circumvented by mirroring 
the model prior to exporting. 

 
Figure 3: Self-Illumination Shader Bitmap 

 

 We discovered that many 3D-engine specific shader 
functions work with the Digital Sky 2 engine, such as self-
illumination.  Self-illumination bitmaps need to have the 
diffuse bitmap edited to where the light is shining and black 
where there is no light (Figure 3). 

 The shader system used by Digital Sky 2 does not provide 
any documentation.  However, we have observed that shader 
equipped models can be built to the level of current generation 
graphical expectations.  Many of the same concepts used by 
high profile video game models can be employed within the 
Digital Sky 2 environment as well [12]. 

F. Large Project Development 
 Larger projects have their own development dynamics.  
Since Digital Sky 2 does not feature any way to speed up or 
slow down the speed of a show, a developer must sit through 
the entire segment before they can see the effect of their 
changes.  This issue takes center stage as sound components 
are added to a presentation. 

 One way to combat this issue involves creating event-
specific buttons on the control program.  If a single button 
controls an exceptionally long segment, one can break that 
segment up into two or more buttons.  Good split locations are 
most often camera change events.  If one copies the last camera 
change made into the top of the new event button with a time 
value of zero, the camera will start at the end of the previous 
segment. 

 By using this technique, it has cut our own development 
time considerably.  When we add sounds or make small 
changes to the movement of the camera or an object, we no 
longer need to wait for 20 minutes before we see the impact of 
that change.  In other words, once editing is complete, one can 
cut and paste the fragment back into the original button event, 
and remove the camera position line. 

1333
2013 IEEE Frontiers in Education Conference



 When we develop large segments, we develop them as 
small partitions from the outset.  Once all of the partitions are 
complete without error, we transfer them to a final button as a 
single event. 

 An important element to keep in mind when using this 
design method is locality.  For example if segment 12 is being 
edited and requires elements from segment 2 to exist, there 
may be complications due to these missing elements.  Ensure 
that all of the resources a segment requires have been loaded 
and are in their proper positions for that segment’s time frame. 

G. Loading Time and Memory Management 
 As a show is running, one hopes that the audience will 
become immersed in the newly created world.  Suddenly, the 
picture stutters, and the audience is jolted back into reality.  Or 
even worse, one of the computers crashes, and suddenly the 
audience is watching a Windows desktop.  These issues arise 
from asset loading and poor memory management.  For large, 
ambitious projects featuring considerable custom content, 
loading times and memory management become a problematic 
hurdle to overcome. 

 Currently in Digital Sky 2, when an asset loads, it is loaded 
in the background.  This loading can be almost seamless for 
small billboard images or sound bites.  However, when the 
system needs to prepare for a scene shift, and a large number of 
assets are loading, this a noticeable on-screen hiccup.  This 
problem can also occur for a small model if it happens to use 
shaders, since it may have four or more large bitmaps to load 
before it can be displayed.  Hiccups can also occur when 
loading a large video file for playback.  In fact, any large file 
has the potential to impact the quality of the on-screen frame 
rate. 

 One of the best techniques to combat this behavior is to 
load assets when the camera is stationary.  The frame rate will 
still be impacted, but because the camera is not actually 
moving the loss of frames will not be noticed.  Using a fade to 
black type transition also makes use of this technique.  A fade 
to black also looks more professional than simply switching 
from one scene to another instantly. 

 The least effective method to utilize is to gradually load 
assets.  For instance, in the feature’s code, one can add 
keyframes between camera positions which do nothing but load 
assets.  In this case, loading assets one at a time over a period 
of time may not result in a noticeable frame rate impact.  For 
example, if a camera moves over a 20-second period, adding 
additional keyframes at 3 second intervals will not affect the 
movement of the camera or how long it takes to move.  
However, one should also make sure that the final load takes 
place before the initial 20 second camera movement has 
completed. 

 Digital Sky 2 has no automatic memory management 
features.  This means that for every asset loaded, it must be 
unloaded or it will continue to take up memory until the system 
is reset or crashes.  When a crash takes place, one of the 
computers usually will shut down Digital Sky 2 and return to 
the desktop.  This problem may arise when playing many 
concurrent shows, since one of those shows may have a 

memory leak.  A general good rule of thumb is to hit the reset 
button between shows to prevent any unexpected behavior. 

 To combat this problem and keep a show running 
smoothly, assets should be unloaded when they are no longer 
used.  If an asset is used more than once for different scenes, 
hiding it may be more useful than unloading and reloading it. 

 At the completion of a show make sure all assets are 
completely unloaded.  Breaking a large feature into segments 
will make memory management easier to handle, since loading 
and unloading can take place on a segment-by-segment basis. 

H. Building an Interactive Presentation 
 The interactive feature is the reason why we began working 
on this project.  Surprisingly, it is simple to accomplish with 
Digital Sky 2.  Not only are the event buttons useful for 
creating a single large feature, but they can also be used to 
control an interactive show. 

 The buttons can mirror what the storyboard overview 
depicts.  Each button can control that particular segment from 
the storyboard.  The show’s presenter will then be able to 
easily follow the flow of the show from one button to the next. 

 Helper buttons may also be implemented.  We use helper 
buttons for naming the spacecraft of our show to what the 
students chose.  This involves us needing to edit that button 
during the show, which contains the code to give a name to an 
object already loaded on the screen, and then activate that 
button.  The students enjoy seeing that they could really 
interact with and change what was visually on screen.  Being 
able to give key objects custom names helps to keep the show 
personal and individualized. 

IV. CONCLUSIONS 
 The ending product for our project was very close to our 
vision for graphical fidelity.  Using the techniques we learned, 
we were able to use Digital Sky 2 to seemingly bring people 
not only to the far reaches of space, but also to the surface of 
Venus and Callisto.  We were able to create branching events 
and tie it all together to create a new kind planetarium 
presentation.  Our success was the approval of teachers as well 
as the interest of the students.  Our premier show aired all day 
long to nearly 300 people, and the show has been added to the 
regular schedule for schools visits.  Using the tools and 
techniques described in this paper, we have successfully 
brought student interest into an area that previously had very 
little interaction. 

 Measuring the success of a public show, where no grades 
or surveys are involved, can be a difficult task.  However, most 
educators can recognize the difference between students that 
are truly interested versus those that are “just attending”.  
Following the premier and consequent presentations of our 
pilot interactive feature, we observed more inquisitive students 
than we had previously.  There was also more of a buzz about 
their experiences during lunches, and more activity between 
“project zones”. When the general target audience is middle 
school children, data gathering can be anything but simple and 
often inconclusive.  We are therefore left to our own 

1334
2013 IEEE Frontiers in Education Conference



observations of the students’ reactions, such as smiles and 
eagerness. 

 If nothing else, we hope that our own success and direction 
provided in this paper will help other educators create an 
exciting educational environment.  Even if one is using 
something other than Digital Sky 2, this paper still holds 
valuable resources for an educator to outline and create a larger 
production.  It is not easy, but capturing the minds and 
sparking the curiosity of students and adults alike is a reward 
only measurable by our future society. 

V. FUTURE WORK 
 With the success of our project, the Millard Oakley STEM 
Center on the Tennessee Tech University campus is actively 
looking to continue to create new interactive content.  We 
know there is more tweaking and tricks that can be utilized by 
the Digital Sky 2 system.  For instance, one of the tricks we 
have been thinking about has been a way to employ a Java 
program to cause ‘on the fly’ edits to a script in the Digital Sky 
2 system.  This can allow for students to interact with the 
system via a computer set up in the room for them, and it 
would remove the necessity for an operator to script in 
whatever custom event a student would build.  One of the 
tweaking techniques we are currently looking into is the reason 
behind a model breaking during bones-based animation if it has 
a shader applied to it as opposed to a regular bitmap.  We are 
investigating the impact that other files within the system may 
be having on this issue.  We are also still investigating the 
unknown object physics that can cause two models to ‘collide’ 
with each other and move each other out of position.  This 
appears to happen at random, and as of the writing of this 
paper, we have been unable to determine how to compensate 
for this behavior by the system.  We are hoping to investigate 
this problem further and discover a workable solution. 

VI. ACKNOWLEDGEMENTS 
 This project could also have not been possible without 
Marc Robinson, who was the co-creator of the presentation 

from conception to giving the show to students.  This project 
would also not have been possible without Dr. Sally Pardue, 
who has incredible dedication to STEM activities and is always 
looking for ways to improve student learning and experiences. 

REFERENCES 
 

[1] “Expedition field trips for schools.” Tennessee Technological 
University. http://www.tntech.edu/stem/expedition-field-trips/ Accessed: 
3 March 2013 

[2] Sky-Skan. http://www.skyskan.com/products/systems Accessed: 3 
March 2013  

[3] Morehead Planetarium and Science Center, The University of North 
Carolina at Chapel Hill. http://www.moreheadplanetarium.org Accessed: 
7 March 2013 

[4] The Lawrence Hall of Science, University of California, Berkeley.  
http://www.lawrencehallofscience.org/visit/activities/planetarium/about 
Accessed: 7 March 2013 

[5] “Storyboarding.” Stanford University. 
http://acomp.stanford.edu/tutorials/storyboarding Accessed: 18 March 
2013 

[6] “X File Reference (Legacy).” Microsoft MSDN. (2013). 
http://msdn.microsoft.com/en-
us/library/windows/desktop/bb173011%28v=vs.85%29.aspx Accessed: 
9 March 2013 

[7] Blender. http://www.blender.org/ AccessedL 9 March 2013 
[8] “3D Studio Max.” Autodesk. http://usa.autodesk.com/3ds-max/ 

Accessed: 9 March 2013 
[9] “Panda DirectX Exporter.” Pandasoft. 

http://www.andytather.co.uk/panda/directxmax_downloads.aspx 
Accessed: 10 March 2013 

[10] “OpenGL: Tutorials: Basic Bones System.” Gpwiki.org. 
http://content.gpwiki.org/index.php/OpenGL:Tutorials:Basic_Bones_Sy
stem Accessed: 22 March 2013   

[11] “Effect (.fx) Files.” XBDEV.NET. 
http://www.xbdev.net/shaderx/fx/index.php Accessed: 12  March 2013 

[12] “Modeling Techniques: Movies vs. Games.” ACMSiggraph. 
http://www.siggraph.org/publications/newsletter/volume-41-number-
2/modeling-techniques-movies-vs-games Accessesd: 27 March 2013  

 

1335
2013 IEEE Frontiers in Education Conference


