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Abstract: While there is an ample amount of medical information available for data mining, many of the datasets are unfortunately
incomplete – missing relevant values needed by many machine learning algorithms. Several approaches have been proposed for the
imputation of missing values, using various reasoning steps to provide estimations from the observed data. One of the important steps in
data mining is data preprocessing, where unrepresentative data is filtered out of the data to be mined. However, none of the related studies
about missing value imputation consider performing a data preprocessing step before imputation. Therefore, the aim of this study is to
examine the effect of two preprocessing steps, feature and instance selection, on missing value imputation. Specifically, eight different
medical-related datasets are used, containing categorical, numerical and mixed types of data. Our experimental results show that
imputation after instance selection can produce better classification performance than imputation alone. In addition, we will
demonstrate that imputation after feature selection does not have a positive impact on the imputation result.
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1. Introduction

While there is an ample amount of medical information
available for data mining, many of the datasets are
unfortunately incomplete. This can generally be attributed
to, among other things, manual data entry procedures,
incorrect measurements or equipment errors. As a result,
many real-world datasets usually contain missing (attribute)
values or missing data (Lakshminarayan et al., 1999).
Unfortunately, this data quality problem can adversely
affect data mining performance.

Because most existing data mining and machine learning
algorithms cannot deal with incomplete data, the simplest
and most straightforward solution is the case deletion
approach, which does not consider examples with missing
values. However, this method is generally appropriate only
when the chosen dataset contains a very small amount of
missing data.

Consequently, the aim of missing value imputation in data
mining is to provide estimations for missing values by
reasoning from the observed data (i.e. complete data)
(Batista & Monard, 2003; Garcia-Laencina et al., 2010).
Some novel imputation methods have been proposed in
recent studies (e.g. Zhang, 2008; Zhu et al., 2011), and there

have been comparative studies between the different
imputation methods (e.g. Batista & Monard, 2003; Acuna
& Rodriguez, 2004; Farhangfar et al., 2008). All of these
studies have demonstrated the effectiveness of the
imputation methods using small to large missing rates over
different types of datasets.

Related studies have demonstrated that missing value
imputation is useful, and it is a better choice than case
deletion when the chosen datasets contain a certain
proportion of missing values. However, none of the related
studies consider data preprocessing tasks, that is, feature
selection (Guyon & Elisseeff, 2003) and/or instance
selection (Garcia et al., 2012), before imputation. The goals
of feature and instance selection are to preprocess the
collected datasets to filter out unrepresentative features
(i.e. attributes) and outliers.

Estimating missing values is based on the observed data.
However, some of the data may be non-representative, such
as data that contains noise. Therefore, the aim of this paper
is to examine whether individually performing feature and
instance selection over the observed data can affect the
imputation results, leading to different mining analysis
results. Specifically, because the real-world datasets can
contain categorical (i.e. discrete), numerical (i.e. continuous)
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or both types of data, and the missing rates vary between
different datasets, our research objective is to provide some
guidelines for data mining practitioners to determine when
the feature and/or instance selection task should be
performed before missing value imputation, quantified over
which different types of datasets with different ‘missing’
rates.

The rest of this paper is organized as follows. Section 2
provides an overview of related research including the
‘missingness’ mechanisms, as well as the use of the k-nearest
neighbour imputation method as the baseline imputation
approach. In addition, feature and instance selection are
overviewed. Section 3 presents the experimental setup and
results. Finally, Section 4 provides some concluding
remarks and targeted future work.

2. Literature review

2.1. The missingness mechanisms

The randomness of missing data can be divided into three
categories: missing completely at random (MCAR), missing
at random (MAR) and not missing at random (NMAR)
(Little & Rubin, 1987).

MCAR deals with the highest level of randomness. In this
case, if P(X |x missing) =P(X |x observed), where X is a
random attribute, then the distribution of X is not affected
by missing values. This refers to data where the missingness
mechanism does not depend on the attribute of interest or
any other attribute that is observed in the data. In other
words, this occurs when the probability of an instance (case)
having a missing value for an attribute does not depend on
either the known values or the missing data. Any missing
data imputation can be applied to this level of randomness
without risk of introducing bias on the data.

In contrast, for MAR, if P(X |x missing, Z) =P(X |x
observed, Z), where X is a random attribute and Z is a set
of predictor attributes, then the distribution of X is not
affected by missing values for X ∈ Z. In other words, this
occurs when the probability of an instance having a missing
value for an attribute could depend on the value of that
attribute or, better yet, when the distribution of an instance
having a missing value for an attribute depends on the
observed data but does not depend on the missing data.

NMAR occurs when the probability of an instance
having a missing value for an attribute could depend on
the value of that attribute. This is the most difficult
condition to model because, in practice, it is difficult to
judge the missing data mechanism, as the values for the
missing data are unknown.

2.2. k-nearest neighbour imputation

In the k-nearest neighbour imputation (kNNI) (Dixon,
1979), missing values are imputed using values calculated
from the k-nearest neighbours. In particular, the nearest

neighbours can be identified by minimizing the distance
function, such as the Euclidean distance. Once the k-nearest
neighbours have been found, a replacement value must be
estimated to substitute for the missing attribute value.

The advantages of kNNI are that it can predict both
qualitative attributes (the most frequent value among the
k-nearest neighbours) and quantitative attributes (the mean
among the k-nearest neighbours). In addition, unlike model-
based imputation methods, it does not require creating a
predictive model for each attribute with missing data.

An important parameter for the kNNI method is the
value of k, which is typically set to 1 but is sensitive to
outliers. However, Jonsson and Wohlin (2004) show that
the performance is fairly unaffected by the value of k. On
the other hand, Batista and Monard (2003) report that
k=10 for large datasets.

The algorithm proceeds as follows:

(1) Divide the dataset D into two parts. Let Dm be the set
containing the instances in which at least one of the
attributes is missing. The remaining instances with
complete attribute information form a set called Dc.

(2) For each vector x in Dm:

(1) Divide the instance vector into observed and
missing parts so that x= [xo;xm].

(2) Calculate the distance between xo and all the
instance vectors from set Dc. Use only those
attributes in the instance vectors from the complete
set Dc, which are observed in vector x.

(3) Use the k closest instance vectors (k-nearest
neighbours) and perform a majority voting
estimate of the missing values for categorical
attributes. For continuous attributes, replace the
missing value using the mean value of the attribute
in the k-nearest neighbourhoods.

For more detailed information on the other imputation
methods, please refer to De Leeuw (2001) and Garcia-
Laencina et al. (2010).

2.3. Feature selection

In general, not all the collected features of a chosen
dataset are informative nor can they provide high
discriminative power (Powell, 2007). Therefore, irrelevant
and/or redundant features should be removed from the
chosen dataset by feature selection, which can improve
the performance of classification and clustering when
data mining.

Feature selection can be defined as the process of
choosing a minimum subset of n features from the
original dataset of m features (n<m), so that the feature
space (i.e. the dimensionality) is optimally reduced.

In this study, the F-score is used (Chen & Lin, 2006). This
is a simple feature selection technique, which measures the
discrimination of two sets of real numbers. Given training
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vectors xk, k=1, 2,…, m, if the number of positive and
negative instances are n+ and n�, respectively, then the F-
score of the ith feature is defined as

F ið Þ ¼ xi þð Þ � xi
� �2 þ xi �ð Þ � xi
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(1)

where xi, xi þð Þ and xi �ð Þ are the average of the ith feature of the
whole, positive and negative datasets, respectively; xk;i þð Þ is
the ith feature of the kth positive instance; and xk;i �ð Þ is the
ith feature of the kth negative instance. The numerator
indicates the discrimination between the positive and
negative sets, and the denominator indicates the one within
each of the two sets. The larger the F-score, the more likely
this feature is more discriminative.

Figure 1 shows an example of a dataset1 with and without
feature selection by multidimensional scaling (MDS) (Cox &
Cox, 2001). As we can see, the data distributions in the 200
and 95 dimensional feature spaces are different. Therefore,
estimations of missing values by the data with 200
dimensions and 95 dimensions could be different.

2.4. Instance selection

Similar to feature selection, the collected data are not all
equally informative, and some data points can be considered
noisy points or outliers. Outliers are unusual observations
(or bad data points) that are far removed from the mass of
data. In other words, an outlier is a value further away from
the sample mean than what is deemed reasonable.

Therefore, the aim of instance selection, or record
reduction, is to reduce the size of a dataset while still
maintaining the integrity of the original (Wilson &
Martinez, 2000). In some cases, generalization accuracy
can increase when noisy instances are removed and when
decision boundaries are smoothed to more closely match
the true underlying function.

Instance selection can be defined as follows. Let Xi be an
instance where Xi= (Xi1, Xi2, …, Xim, Xic), meaning that Xi

is represented by m-dimensional features and Xi belongs to
class c given by Xic. Then, assume that there is a target set
TA that consists of M instances, which is used for instance
selection. Consequently, the subset of selected samples S
are produced, where S⊆TA. Given a testing set TS, we
can classify a new pattern T from TS over the instances of
S and TA. If the instance selection algorithm has been
chosen appropriately, the classifier performance trained by
S should be better than TA.

In this work, IB3 (Aha et al., 1991) is used as the instance
selection algorithm because it can perform instance selection
efficiently (where the computational complexity is O

(n2log2n)) and can provide reasonably good performance
(Garcia et al., 2012). This method utilizes an acceptable
instance concept to carry out the selection. That is, instance
x from the training set is added to a new set S if the nearest
acceptable instance in S (if there is no acceptable instance a
random one is used) is in a different class than x.
Acceptability is defined by a confidence interval

pþ z2

2n±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p p�1ð Þ

n þ z2
2n2

q

1þ z2
n
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where z is the confidence factor (in IB3 0.9 is used to accept,
0.7 to reject), p is the classification accuracy of a given
instance (while added to S) and n is equal to a number of
classification trials for the given instance (while added to S).

Figure 2 shows the MDS results of the dataset used in
Figure 1 with and without instance selection.We can observe
that the data distribution in the reduced dataset after
instance selection is different from the one in the original
dataset. Therefore, the results of missing value imputation
for 7809 and 3720 data samples could be different.

3. Experiments

3.1. Experimental setup

3.1.1. The datasets and baseline classification accuracy
Eight medical-related datasets, which contain different types
of data, are chosen from the UCI Machine Learning
Repository.2 They contain both categorical, numerical and
mixed attribute types of data. Moreover, each type of
dataset contains differing numbers of attributes, samples
and classes, allowing us to determine the effect of varying
different types of datasets with different missing rates on
the final classification accuracy.

The k-nearest neighbour (k-NN) classifier (k=1) is used
for the classifier because 1-NN can be conveniently used as
the baseline classifier, and this method is likely to provide
a reasonable classification performance in most applications
(Jain et al., 2000). Moreover, after performing case deletion
on each dataset, 10-fold cross-validation is used to divide
each dataset into 90% training and 10% testing sets to train
and test the 1-NN classifier. An example of these datasets
and their classification accuracy is shown in Table 1.

Missing values for each dataset are randomly introduced
into all attributes (using missing data rates of 5, 10, 15, 17
and 20 to 50% at 5% intervals) by the MCAR mechanism.
In order to reduce the likelihood of obtaining biased results
by randomly introducing missing values, each missing rate
calculation is performed 20 times over each dataset, and
the final classification accuracy for that dataset is based on
averaging the 20 different classification results.

1The dataset is composed of 7809 data samples, and each data sample
contains 200 features. 2http://archive.ics.uci.edu/ml/
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3.1.2. The process of combining feature selection and
imputation In order to examine the effect of performing
feature selection on missing value imputation, the
experimental process is as follows. Given a dataset D with

a missing value, the data with and without missing values
can be grouped into complete (Dcomplete) and incomplete
subsets (Dincomplete), where D∈Dcomplete+Dincomplete.

First of all, feature selection based on the F-score is
performed over the complete subset Dcomplete. In particular,
50% of the important features of Dcomplete are kept. That
is, the top 50% of features having higher F-scores are
selected. This leads to a reduced subset, denoted as
Dcomplete_feature_reduced.

3 Next, the unimportant features of
the incomplete subsets Dincomplete identified in the preceding

3If too few features are filtered out, Dcomplete_feature_reduced will be similar
to Dcomplete, which makes it unlikely that performance differences will
be shown. In fact, if too many features are filtered out, the discriminative
power of Dcomplete_feature_reduced will be much less than that of Dcomplete.
Therefore, we think that selecting 50% of the original features should
be a reasonable decision.

Figure 1: An example of a dataset before and after feature selection.

Figure 2: An example of a dataset before and after instance selection.

Table 1: Dataset information

Dataset
No. of
instances

No. of
attributes

No. of
classes

Classification
accuracy

Categorical datasets
Lymphograph 148 18 4 75.68%
Numerical datasets
Breast cancer 286 9 2 95.75%
Escherichia coli genes 336 8 8 80.36%
Pima Indian diabetes 768 8 2 70.18%
Yeast 1484 8 10 52.29%
Mixed data types
of datasets
Liver disorders 345 7 2 62.9%
Statlog 270 13 2 75.19%
Statlog_German 1000 20 2 69.7%
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texts are removed, which results in a new reduced subset,
denoted byDincomplete_feature_reduced. Then,Dcomplete_feature_reduced

and Dincomplete_feature_reduced are combined (denoted as
Dfeature_reduced) for imputation by kNNI. Note that the number
of data samples in Dfeature_reduced is the same as D. Finally, the
reduced dataset Dfeature_reduced becomes complete after
performing the imputation step, denoted as D ′

feature_reduced. Besides, another feature selection algorithm,
that is, the genetic algorithm (GA) (Raymer et al., 2000),
is also used for comparison.

After performing imputation, the incomplete dataset D,
denoted by D′, is used as the baseline. In addition, 10-fold
cross-validation over D′ and D ′ feature_reduced is applied to
train and test the 1-NN classifier. Consequently, the
classification accuracy of 1-NN over D′ and D ′ feature_reduced
is compared to investigate the effects of feature selection.

3.1.3. The process of combining instance selection and
imputation In order to combine instance selection and
imputation, first instance selection based on IB3 is
performed over the complete subset Dcomplete. As a result,
a reduced subset, denoted as Dcomplete_instance_reduced, is
produced. Note that unlike feature selection by F-score,
using IB3 is not necessary to determine how many data
samples should be removed. Next, Dcomplete_instance_reduced

and Dincomplete are combined (denoted as Dinstance_reduced)
for imputation by kNNI. Note that the number of features
in Dinstance_reduced is the same as D and the number of data
samples in Dinstance_reduced is smaller than the one in D.
Finally, after performing imputation, the reduced dataset
Dinstance_reduced becomes complete, denoted as D ′

instance_reduced. Besides IB3, another instance selection
algorithm, that is, DROP3 (Wilson & Martinez, 2000), is
also used for comparison.

For performance comparison, 10-fold cross-validation
over D′ and D ′ instance_reduced is applied to train and test the
1-NN classifier individually. Consequently, the classification
accuracy of 1-NN over D′ and D ′ instance_reduced are
compared to examine the effects of instance selection.

3.2. Results from datasets with specific missing rates

Table 2 shows the classification results obtained by case
deletion, imputation (by kNNI), imputation after feature

selection (FS) and imputation after instance selection (IS)
over different datasets. Note that the missing rate allowed
for each dataset means that the classification accuracy by
case deletion is similar to the one over the complete dataset
(i.e. the baseline). In particular, the level of performance
similarity between case deletion and the baseline is defined
by less than a 5% classification difference. For instance, using
the complete dataset of Lymphograph, the classification
accuracy of k-NN is 75.68%. Therefore, the threshold for
using case deletion for this dataset is that the classification
accuracy should be higher than 71.9% (i.e. 75.68%×0.95).
In this case, the classification accuracy of k-NN over the
Lymphograph dataset with missing rates of 10 and 15% will
be 71.95% (higher than the threshold) and 55.14% (lower
than the threshold), respectively. Therefore, the allowable
missing rate is 10%. So, in this example, a Lymphograph
dataset with 10% missing values is used for imputation, FS
with imputation and IS with imputation.

From these results, we can determine the suitability of
using case deletion for different types of incomplete datasets
containing different rates of missing values. In addition,
incomplete dataset imputation does not necessarily provide
better results than the case deletion method when the
datasets contain certain missing rates. That is, the average
classification accuracy by case deletion is higher than the
one by imputation.

Our research objective is to compare the performances
obtained by imputation and imputation after FS and IS.
The average results indicate that performing FS first over
incomplete datasets does not positively affect the final
imputation results. In other words, the classification results
obtained by both approaches are very similar. On the other
hand, the average classification accuracy obtained by
performing IS first and missing value imputation second is
much higher than the one obtained by performing missing
value imputation alone.

3.3. Results on specific datasets with various missing rates

We further examine the datasets where there are significant
performance differences between imputation and
imputation after FS and IS. Note that we use F-score and
IB3 to represent FS and IS, respectively, because they
provide (slightly) better performances than GA and

Table 2: Classification results over different datasets

Datasets
Missing rate
allowed Case deletion Imputation

Imputation after FS
(F-score/GA)

Imputation after IS
(IB3/DROP3)

Lymphograph 10% 68.05% 72.57% 70%/69.8% 76.83%/76.39%
Breast cancer 45% 96.95% 93.06% 91.77%/92.31% 92.75%/88.8%
Escherichia coli genes 30% 79.78% 71.25% 70.12%/68.52% 71.51%/ 67.44%
Pima genes 10% 68.02% 67.73% 67.63%/67.66% 78.07%/75.11%
Yeast 10% 49.3% 47.59% 44.53%/45.77% 65.31%/ 52.14%
Liver disorders 10% 60.3% 60.06% 57.57%/58.35% 66.16%/ 59.45%
Statlog 15% 72.16% 73.26% 73.26%/71.26% 76.58%/65.56%
Statlog_German 10% 64.89% 66.64% 65.8%/65.02% 69.52%/69.93%
Avg. 69.93% 69.02% 67.59%/67.34% 74.59%/69.35%
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DROP3, respectively. Figures 3 and 4 show the results of
imputation after FS versus imputation and imputation after
IS versus imputation, using datasets with various missing
rates (i.e. from 5 to 50%). Note that for some datasets with
certain missing rates, the imputation algorithm cannot be
performed because there are not enough ‘complete’
examples in the training data for missing value imputation.

Performing FS before imputation is likely to a have
negative impact on the imputation results, which leads to
poorer classification performance than performing imputation

alone. The results indicate that performing IS before
imputation can have a positive impact that results in higher
classification accuracy than performing imputation alone. In
particular, the performance improvement is significant, that
is, p< 0.05.

These results are consistent with results presented earlier
that performing IS first and imputation second can improve
the final classification accuracy. However, performing FS
before imputation cannot provide reasonable improvement.

In other words, removing some outliers (or noisy data)
from the (complete) training dataset allows the imputation
algorithm to produce better estimations for missing values,
which results in higher classification accuracy than that
obtained without performing IS.

4. Conclusion

Many real-world medical datasets are usually incomplete,
containing some missing attribute values. Missing value
imputation is one of the common approaches taken to solve
the incomplete dataset problem. Although there are many
different types of imputation algorithms mentioned in the
literature, there have been no related studies examining
whether performing data preprocessing, that is, FS and IS,
has any impact on the final imputation results.

In this study, our aim is to compare the classification
performance obtained with both data preprocessing tasks
before imputation and by imputation alone. Three types of
medical datasets, including categorical, numerical and the
mixed type of data, are used in our determination of the effect
of FS and IS on missing value imputation and understanding
when we should consider FS or IS before imputation.

Our experimental results show that imputation after IS
can produce better classification performance than
imputation alone, while imputation after FS does not have
a positive impact on the imputation result.

In the future, we hope to further examine large scale, or
‘big data’, datasets, which contain a very large number of
features and data samples, as well as high-dimensional
datasets, where each data sample is represented by a large
number of attributes. In addition, it is worth investigating
whether we should directly ignore examples with missing
values without performing imputation. The initial results
indicate that better classification accuracy is obtained with
the case deletion method than performing imputation over
some datasets containing specific missing rates. Moreover,
other statistical and supervised learning based imputation
methods, such as naïve Bayes, neural networks, etc., can
be employed for further comparison.
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