
Detecting Anomalies in Cargo Shipments Using Graph 
Properties 

William Eberle and Lawrence Holder 

Department of Computer Science and Engineering 
University of Texas at Arlington 

Box 19015, Arlington, TX 76019-0015 
{eberle,holder}@cse.uta.edu 

Abstract. Detecting anomalies in the structural, or relational, component of 
data is a new and important challenge, especially in security-related domains. In 
this paper, we analyze the use of variations in graph properties to detect 
structural anomalies in graphs.  Based on several pattern recognition 
approaches proposed on various domains like the internet, telecommunication 
call records and social networks, we evaluate the use of these methods for the 
detection of anomalies in data that is structurally represented as a graph.  Our 
study shows benefits of using graph properties in the analysis of real-world 
graphs, particularly as it pertains to anomalous activity in cargo shipments. 

1   Introduction 

The ability to mine relational data has become important in several domains (e.g., 
counter-terrorism), and a graph-based representation of this data has proven useful in 
detecting various relational, structural patterns [1]. Yet, while detecting anomalies in 
these domains is also important, less work has been done in detecting anomalies in 
graph-based data. The purpose of this paper is to present some of the existing work, 
and then to analyze approaches that can help with the discovery of anomalies.  
Specifically, we will analyze the use of graph properties as a method for uncovering 
anomalies in data represented as a graph. 

Probably nowhere has the idea of using graph properties to analyze data been 
applied more than in the area of the web, or the topology of the Internet.  Broder et al. 
[2] presented a graph structure of the web using various graph properties such as 
distance, proportion and connectedness.  They were able to use these properties to 
represent the interplay of web pages, as well as locate a “spammer”.  Using several 
graph metrics, Jaiswal et al. [3] explored the structure of the internet and were able to 
provide some insights into a structure’s interconnections.  Boykin and Roychowdhury 
[4] also used graph properties in their analysis of social networks. Using e-mail and 
address books, they calculated the clustering coefficient of the graphical 
representation of the data, and used that information to distinguish between spam and 
desired e-mail.  What is interesting in these works is their use of a graph’s properties.  
The fact is, there has been quite a bit of research in the area of graph properties as it 
pertains to pattern recognition and the defining of a graph’s structure.  
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However, recently, there have been some efforts to use the properties of a graph in 
other ways.  For instance, Xu and Chen [5] used several graph properties to analyze 
disparate criminal data.  By deriving several graph metrics, they were able to uncover 
criminal subgroups in data.  Some of their work was based upon the work of Klerks 
[6], as he applied various measures to the detection of criminal organizations. 

All of these papers presented just a few of the possible graph properties that could 
be useful as it pertains to anomaly detection.  The focus of this paper is to use some of 
these graph properties, in addition to a few others, to see how they might be used in 
detecting anomalies in a graph.  First, we will define what we consider to be an 
anomaly as it relates to graphs.  Then, we will present the various graph properties 
that will be used in our tests.  This will be followed by a description of the data that 
will be used, and how the data will be manipulated to introduce anomalies.  Then, the 
results of our examination of the graph properties on synthetic data will be presented. 

As a final part of this examination, we will present our results as they are applied 
to cargo shipments.  Using data supplied by U.S. Customs and Border Protection 
(CBP), we will introduce anomalies based upon scenarios of illegal shipments into the 
U.S.  Over 6 million containers arrive via ships into U.S. ports every year [7].  Due to 
these high volumes, only 2-4 percent of these shipments can be examined, including 
those associated with terrorist-related manifests.  Analysis of the properties of cargo 
shipments, represented as graph data, will show the value of this approach. 

2   Definition 

As was mentioned earlier, the goal of this paper is to present techniques for detecting 
anomalies in data that can be represented structurally as a graph.  While the concept 
of an anomaly can be rather broad, for our purposes, we define a graph anomaly as a 
structural inconsistency.  That is, a graph whose structure was different than expected.   

A graph G is composed of vertices (or nodes) V, and edges (or links) E.  Each 
vertex can be connected, via an edge, to zero (which means it is isolated) or more 
other vertices.  It can even be connected to itself (called a self-edge).  Edges can be 
undirected, meaning the relationship between the connecting nodes goes either way, 
or it can be directed, which means that the relationship is one-way.   

When representing data as graphs, the data can be defined as the set of expected 
graphs, anomalous graphs and noisy graphs.  An example of this is a set of shipping 
manifests, where an expected shipment, in this example, is a “bill of lading” that has 
been inspected (and passed) at all ports of entry.  Thus, a defined stream of data 
would consist of the set of graphs, such that a graph is either expected, meaning it 
consists of these expected shipments; anomalous, which indicates a graph of 
shipments that were not expected; or noise, which are shipments that should not have 
been found in the data stream, like shipping manifests that were incorrectly entered. 

3  Graph Properties 

A graph can exhibit many properties.  When one is dealing with a social network or a 
computer network, the nodes and their links can vary greatly because of the overall 
relationship that they represent.  Yet, whether it is a graph representing a terrorist 
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network, or a graph representing cargo shipments, they all have graph properties.  The 
important hypothesis that will be considered in this paper is that the structural 
differences between graphs can be measured using quantitative measures.  

3.1   Simple 

While our initial research examined many of the basic graph properties, only a few of 
them proved to be insightful as to the structure of a graph for anomaly detection 
purposes: average shortest path length, density and connectedness.  

For the average shortest path length L, we used the Floyd-Warshall all-pairs 
algorithm. Using the algorithm presented in [8], we created an adjacency matrix 
where the shortest path length between two nodes could be determined.  After 
creating the adjacency matrix, the length of the shortest paths between each connected 
pair was summed and divided by the total number of node pairs.  Thus, this 
measurement will deviate if the path length between vertices changes. 

For a measurement of density, we chose to use a definition that is commonly used 
when defining social networks [9].  In a social network, entities have clear 
relationships to other entities, and any disruption of that relationship can affect the 
social makeup of the network, similar to the way the introduction of an anomaly can 
disrupt the structural relationship of a set of data. This definition of density is defined 
as the ratio of the number of actual edges E to the maximum possible number of 
edges (V*V): D = |E| / |V|2.  Obviously, the insertion, modification or removal of data 
from a graph alters how compact and interrelated the components may be. 

For “connectedness”, we used a definition that Broder et al. [2] defined in their 
paper.  They defined a strongly-connected component of a graph as the set of nodes 
such that for any nodes u and v in the set, there is a path from u to v.  From that, we 
defined the “connectedness” of a graph as the set P, that contains all pairs (u,v) such 
that there is a path from u to v in G, where the cardinality of P is divided by the 
number of possible pairs (V*V): C = |P| / |V|2.  This property is a good measurement 
of the established relationships between entities.  If there is an expected amount of 
connections within a graph (and by connections we mean two vertices that are 
connected either directly or indirectly), then the severing of a relationship, or the 
addition of a new relationship, will alter the connectedness measurement.  

3.2   Complex 

For what we are calling complex graph properties, we are going to investigate two 
measurements.  First, there are the eigenvalues of a graph.  Using an adjacency matrix 
α  (like the one we used for calculating the shortest path lengths in the previous 
section), the entry ijα  = jiα  = 1 indicates there is a link between i and j. All other 

entries are 0.  The number λ  and the vector v represent the eigenvalue and 
eigenvector of vv λα = .  The result is multiple eigenvalues (one for each of the 
number of vertices), however, for our purposes, only the maximum eigenvalue E will 
be used.  This is due to the fact that many of the eigenvalues are small (approaching 
zero), and averaging them would not give us an accurate picture.  As it is, looking at 
just the maximum eigenvalue (as will be shown shortly), provides a useful graph 
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property.  This same observation of using the maximum eigenvalue was noted by 
Chung et al. [11] in their study of eigenvalues as it related to graphs. 

Another graph property is the graph clustering coefficient.  In their work on 
identifying e-mail “spammers”, Boykin and Roychowdhury [4] identified the 
clustering coefficient for the graph to be the average of the clustering coefficients of 
each vertex:   
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where |V’|  is the total number of vertices of degree greater than 1, |E|  is the number 
of edges, and k is the degree. While “spamming” is not necessarily an anomaly, it 
does convey an unwanted set of data. 

4   Data for Anomaly Detection 

The following sections describe the data that we will use in our testing, and what 
types of “anomalous” structures will be introduced into the data. 

4.1   Data 

The following section describes different structural changes to a graph that could 
constitute an anomaly in the data.  Before we introduce known anomalies into cargo 
data, we feel it is important to be able to test each of the graph properties on different 
types of changes so that we can analyze their effectiveness.  Thus, in order to control 
the structure of the graphs, and ultimately have graphs conveying different properties, 
we will first create various synthetic random graphs.   We will then apply these same 
structural changes to some actual cargo shipments. 

For each of the tests below, we want to make sure that we create (a) enough 
samples to be statistically valid, and (b) comparison samples that are of the same 
number of vertices and edges (size).  For the latter criterion, we knew that if we vary 
the number of edges and vertices in the input graphs, the difference in many of the 
graph properties will be too volatile, making it difficult to compare.  So, for each of 
our tests, we will randomly change the connections, while keeping the same sizes. 

Generation of the anomalous graphs will be handled the same way.  Anomalous 
graphs will be grouped by the size of their associated non-anomalous graph, where 
the size of the anomaly within the graph is based upon the size of the graph.  In other 
words, the smaller the graph, the smaller the anomaly.  For obvious reasons, we do 
not want to bias the results by inserting a large substructure into a small graph. 

It should also be noted that not only could the size (or number of vertices) of an 
anomaly bias our results, but the number of connections (or edges) could also have 
the same effect.  So, to keep the baseline tests on equal footing, we will keep the 
density of the graphs relatively the same: a ratio of approximately 4 edges for every 3 
vertices.  This ratio was chosen for two reasons.  First, the computational complexity 
of some of the calculations increases as the number of connections is increased.  
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Second, the time it takes to generate the random graphs is also adversely affected 
time-wise as the number of edges is increased.   

For those anomalies that are randomly inserted into the structure, we want to 
convey two ideas.  First, our view of an anomaly is one of something that wants to be 
hidden.  In other words, if an anomaly were of a malicious nature, the perpetrator 
would probably want to alter the structure of the data as little as possible, so as to 
remain elusive.  Second, the anomaly will be of similar structure, but perhaps not 
perfect.  Therefore, each of the inserted anomalies has the same connection strategy to 
the rest of its associated graph. 

In order to further validate our results, and provide real-world usefulness to these 
experiments, we will also create graphs from actual cargo shipments supplied by the 
CBP.  After constructing a graphical representation of the shipments, we will then 
introduce anomalies that represent illegal cargo. 

4.2   Structural Changes 

Anomalies, whether malicious or not, can take many forms when it comes to the 
structure of the data.  Data can be added, removed, or altered in its relationship to its 
surrounding environment.  As we mentioned in the previous section, the structure of 
the non-anomalous and anomalous graphs will be kept as similar as possible.  While 
we will control the size of the graphs so that we can repeat tests and make statistically 
valid observations, the structure of the synthetic graphs will be random.  In other 
words, we will specify the number of vertices and edges when we generate the 
graphs, but we will let our random graph generator determine the order of the edges. 

For the synthetic data used in this paper, we are going to randomly interject the 
following structural changes: 

 
• Adding a substructure (of one or mores edges and vertices) 
• Removing a substructure (of one or more edges and vertices) 
• Moving one or more edges 
• Adding an isolated substructure (i.e., not connected to the rest of the graph) 

 
These are all the possible structural changes that can be introduced into a graph. 

To illustrate these synthetic changes, Fig. 1 shows an example of one of the 
synthetic graphs with a substructure anomaly (shown in bold), as visualized using 
AT&T’s GraphViz program.  For cargo data, the structural changes that will be 
applied are indicative of 
the possible patterns that 
represent illegal shipments 
(drug smuggling, arms 
dealing, etc.).  Each of the 
same types of structural 
changes that are applied 
on the synthetic data can 
also be found in the 
graphs that contain the 
illegal cargo containers. Fig. 1. Example of random graph with inserted anomaly. 
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5   Synthetic Results 

For each of our tests, we created 6 different graph size types consisting of 
approximately 35, 100, 400, 1000, and 2000 vertices, and another being a dense graph 
of about 100 vertices and 1000 edges.  For each of these increment sizes, we created 
30 non-anomalous graphs.  We then generated 30 anomalous graphs for each of the 
four structural changes discussed in the previous section, for each of the graph types.  

5.1   Density (D) 

For the smaller graphs, the density of the graph lessens when an anomalous 
substructure is connected to existing vertices in the graph.  This makes sense, as the 
number of actual vertices and edges would increase, while the number of possible 
pairs would increase even more, resulting in a wider deviation, and hence a lower 
density.  This also explains why the density of the graphs that contain the isolated 
substructure is less, due to the fact that they contain unconnected vertices. 

The anomalous graphs as a result of the removal of a substructure result in a wide 
deviation in the density measurement.  Since the removal was random, and the graph 
was randomly generated, it is not surprising that the results were not consistent.  
However, the average density of the anomalous graphs was not too different from the 
average density of the non-anomalous graphs. Fig. 2 shows this deviation, while Fig. 
3 shows that the average density value does not vary much from the expected density. 

For the larger graphs, the density of graphs that had a substructure removed varies 
even more.  At first we can hypothesize that, as was mentioned earlier, the variance in 
density is just dependent on the randomness of the change.  However, the density 
variance could be attributable to the size of the substructure that was removed.  Later 
we will try varying the size of the anomaly in proportion to the size of the entire graph 
and analyze the results.  The average results for all of the runs are shown in Table 1. 

While the properties of the dense graphs (10 to 1 ratio of edges to vertices) with the 
inserted anomalies show the same behavior, it is interesting that the density of the 
graphs with the removed substructure does not show the same erratic deviation.  What 
this tells us is that the denser the graph, the less the anomaly of a removed 
substructure can be observed. 
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         Fig. 2. Density plot of different anomalies.
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     Fig. 3. Mean density of different anomalies.  



Detecting Anomalies in Cargo Shipments Using Graph Properties      7 

Table 1. Average density (and standard deviation). (Note: Deviations < .0001 are shown as 0.) 

Graph 
Size (V) 

Original Inserted Sub Removed Sub Moved Edges Isolated Sub 

35 0.03968 (0) 0.03711 (0) 0.04037 (.001) 0.03968 (0) 0.03576 (0) 
100 0.01306 (0) 0.01282(0) 0.01307 (0) 0.01306 (0) 0.01242 (0) 
400 0.00307 (0) 0.00305 (0) 0.00307 (0) 0.00307 (0) 0.00303 (0) 
1000 0.00113 (0) 0.00113 (0) 0.00113 (0) 0.00113 (0) 0.00112 (0) 
2000 0.00068 (0) 0.00068 (0) 0.00068 (0) 0.00068 (0) 0.00068 (0) 
100/1000 0.11324 (.0008) 0.09987 (.0007) 0.11316 (.0008) 0.11324 (.0008) 0.09969 (.0007) 

In summary, what we observe is that the graph property of density is visibly 
affected by the insertion of a substructure, and therefore could be used as a 
mechanism for detecting those types of anomalies.  A possible scenario of such a 
structural anomaly could be found in a calling network, where terrorists are now 
calling people that they do not normally call.  It is possible that one could discover 
this anomaly by analyzing the density of the graphical representation of the calls. 

5.2   Connectedness (C) 

For small graphs, the connectedness of the graphs varies for each of the different 
types of anomalies.  However, while the variation for some anomaly types is not 
significant, there is some deviation. Similar to density, the insertion and isolation 
anomalies result in lower values.  And, in addition, the insertion of an isolated 
substructure has an even greater variation on the measurement (see Fig. 4).  As we use 
larger and larger graphs, it appears that a higher deviation is being exhibited. But, 
when the average of the connectedness values is examined, only the insertion of a 
substructure (isolated or not) actually has lower connectedness values.   

It is also noted that the same behavior is found in the dense graphs.  So, not only is 
the connectedness of a graph not affected by its density, but connectedness also 
uncovers the same two anomalies (connected and isolated substructure insertions) as 
the density measurement.  The results indicate that density and connectedness could 
be used in conjunction for the scenario of a terrorist call network. 

5.3   Clustering Coefficient (CC) 
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    Fig. 4. Connectedness

For the small graphs, the measurements from the isolated anomalous substructures 
and the anomaly of moved edges are the only ones that show any significant changes.  
While it makes sense that the insertion of an isolated substructure would affect a 
graph’s clustering, the variance because of the moved edges is significant due to the 
way the deviation changes. As the graphs get 
larger, the distribution still holds.  However, 
as the size of the graphs grows, the coefficient 
of the graphs with moved edges increases 
significantly.  For instance, as shown in Fig. 
5a, when the size of the graph gets to 2000 
vertices, the mean clustering coefficient when 
edges are moved is almost twice as much as 
the coefficient found in the original graph. 
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Mean Highest Eigenvalue (~2000 vertices)
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      Fig. 5c. Mean highest eigenvalue. 
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        Fig. 5b. Avg shortest path. 
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      Fig. 5a. Coefficient. 

The clustering coefficient is the first of these measurements to be significantly 
affected by a graph’s density.  While the ability to detect edges that had been moved 
is clear in graphs of varying sizes, when the graphs became denser, the indications 
shift to inserted isolated substructures.  The possibility of discovering moved edges is 
encouraging.  Perhaps the clustering coefficient can be used in the analysis of air 
traffic data, whereby flight patterns are initiated that are not the normal expected 
routes for particular types of aircraft, which might indicate possible terrorist activity. 

5.4   Average Shortest Path Length (L) 

Looking at the small graphs, similar to the clustering coefficient, the distribution of 
values for the average shortest path lengths appears to be similar across each of the 
types of anomalies.  However, unlike the clustering coefficient, the average shows a 
deviation when an anomalous substructure is inserted, whether it is isolated or not, 
that is not readily apparent until it is plotted as a histogram (Fig. 5b).  

Yet, as the size of the graph increases, the values come together.  For our examples 
of graphs with 400 vertices, the difference in values between the different types is not 
even noticeable.  This trend continues with the rest of our larger tests. 

Clearly, this is the weakest of the measurements.  While it does show us something 
on very small graphs (for inserted anomalies), it is perhaps the measurement of the 
moved-edges anomaly on dense graphs that could be the most significant.  This 
makes us also think of another scenario whereby analysis of a medical network of 
people that are treated for a disease could help in mitigating a possible outbreak.  A 
disease that is spreading (edges) via seemingly unrelated people (vertices) might show 
up in the structural change of varying medical reports. 

5.5   Highest Eigenvalue (E) 

Up until now, we have been unable to find a measurement that aids in the uncovering 
of substructures that have been removed.  However, the average of the highest 
eigenvalues is different when it comes to the anomalous removal of a substructure.  
As the graphs get larger (as well as for dense graphs), not only is the difference in 
anomalous removals significant, but now the moving of edges shows some interesting 
perturbations.  Since the eigenvalues are tied to the vertices and their relationships 
(edges), and we are looking for the highest eigenvalue, it is interesting that these two 
anomalies are discovered using this measurement.  As shown in Fig. 5c, it appears 
that the removal of substructures greatly affects the overall structure (as does the 
moving of edges).  If the eigenvalue is a true indicator of a graph’s structural make-
up, it can indeed be a good measurement for structures that have been altered. 
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Table 2.   Positive measurements. 

Size (V) Inserted Sub Removed Sub Moved Edges Isolated Sub 
35 (D) (C) (L) (E)  (E)  (CC) (D) (C) (CC) (L) 
100 (D) (C)  (E)  (CC) (D) (C) (CC) 
400 (D) (C)  (E)  (CC) (D) (C) (CC) 
1000 (D) (C)  (E)  (CC) (D) (C) (CC) 
2000 (D) (C)  (E)  (CC) (E) (D) (C) (CC) 
100/1000 (D) (C)  (E)  (L) (E) (D) (C) (CC) 

The eigenvalue could be useful in the analysis of financial data whereby the 
methods by which money is handled changes when a fraudulent scheme is taking 
place, for instance, as part of a money-laundering scheme.  Instead of all of the 
normal steps in a money transaction, certain parts of the “process” are not present.  In 
other words, they are removed from the structural representation of the transactions. 

5.6   Summary 

Table 2 represents a summary of each of the graph types versus each of the different 
types of anomalies in terms of what measurements show promising results.  It is 
apparent from this synopsis that there is not one graph property measurement that will 
work for all of the graph types and anomalies (that are presented here).  There are 
some graph property measurements that work for all graph types for a particular 
anomaly, and even some anomalies can be detected with multiple graph property 
measurements.  But, the question is, can we define a metric by which we can 
empirically choose what graph properties should be used to detect an anomaly? 

If we are looking for anomalies that have been inserted into the data (and not 
isolated), the graph properties of density D and connectedness C both appear to be 
useful.  We can say that, A1= f(d1+c1/d2+c2), where the anomaly A1  is a function of 
the ratio between the expected density d1  and the expected connectedness c1  and the 
actual density d2  and the actual connectedness c2.  The function f returns the positive 
ratio of the two sets of values, as a positive power function (i.e., the absolute value of 
the ratio subtracted from 1.0), such that 0.1)(0 ≤< xf where the closer f(x) is to 
1.0, the more anomalous the graph. 

For detecting anomalies where data has been removed, the eigenvalue E 
measurement is the only metric we attempted that is useful. So, our second anomaly 
measurement is simply: A2 = f(e1/e2), where A2 is a function of the differential 
between the expected eigenvalue and the actual eigenvalue. 

For the anomalies associated with moved edges, there does not appear to be a 
clear-cut choice across all graph types.  We can use the clustering coefficient CC for 
all but the denser graphs:  A3 = f(cc1/cc2),where the anomaly A3 is a function of the 
differential between the expected clustering coefficient cc1 and the actual clustering 
coefficient cc2.  For dense graphs, we can use the eigenvalue E and the average 
shortest path length L:  A4 = f(e1 + l1 / e2 + l2),where the anomaly A4 is a function of 
the differential between the expected eigenvalue e1 and the expected path length l1 
and the actual eigenvalue e2 and the actual length l2. 

Finally, while we could use A1 as a function for finding inserted substructures that 
are isolated from the rest of the graph, we can actually make a better measurement of 
anomalousness by adding the clustering coefficient:  A5 = f(d1 + c1 + cc1 /d2 + c2 + 
cc2),where the anomaly A5 is a function of the differential between the expected 
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Table 3.   Anomalous scores. 

Graph Size  A1 (insertions) A2 (removal) A3 (moved) A5 (insertions – isolated) 
35 .0632323825 .0489112512 .1244572353 .0527049953 
100 .0181850386 .0021727594 .4077198879 .0512737839 
400 .013549854 .003954027 .1833891237 .0145506724 
1000 .0065715021 .0033349632 .0021704178 .0077651433 
2000 .0036705668 .0010489317 .8998137548 .0047484545 
100/1000 .1173940532 .0077862738 (A4).0075303372 .0931024849 

density d1, the expected connectedness c1 and the expected clustering coefficient cc1, 
and the actual density d2, connectedness c2 and clustering coefficient cc2. 

To show the usefulness of each of these measurements, Table 3 shows the result of 
applying the above formulas to the results presented previously in this paper.  While 
some of the values shown are greater than 0 than others, they still indicate the 
presence of an anomaly, and their deviations can be attributed to the size of the 
anomaly versus the size of the graph.  When we test increasing the size of the 
anomalies, for each additional anomalous vertex and edge, the result is a score that 
linearly grows towards 1.0.  One of our future goals will be to further refine these 
measurements to clearly differentiate between different types and sizes of anomalies. 

6   Cargo Results 

In addition to the randomly generated synthetic data presented above, we also ran the 
algorithms on actual cargo data.  This particular data set consists of cargo shipments 
that represent imported items from foreign countries to the U.S.  In order to keep the 
size of the graphs similar to the random graphs created earlier, we converted the data 
into approximately 50 shipments per graph, which translated to about 1100 vertices 
and 1300.  This again provides us with enough samples to be statistically valid, as 
well as comparison samples that are of the same number of vertices and edges. 

The anomalies that we introduced into the cargo data consists of two scenarios.  
The first anomaly is derived from a press release issued by the U.S. Customs Service 
where almost a ton of marijuana was seized at a port in Florida [12].  This anomaly 
represents drug smuggling, whereby the perpetrators attempt to smuggle the 
contraband into the U.S. without disclosing some financial information about the 
shipment.  Also, an extra port was traversed in-route.  In other words, while the 
shipment looked for the most part like containers of toys, food, and bicycles from 
Jamaica, there were a couple of structural changes that might not have been noticed 
otherwise.  Fig. 6 shows a graphical representation of a shipment (as a substructure in 
the entire graph) that contains the anomaly. For space reasons, only this small 
substructure of the entire graph can be shown.  The entire graph contains several of 
these substructures linked by common nodes, such as ports, carriers, etc. 

 
Fig. 6. Graph representation of cargo shipment containing the anomaly, with an insertion in bold and 
removals represented as dotted lines. 
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Density Changes Using Cargo Data
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       Fig. 7a. Density changes.  

Connectedness Changes Using Cargo Data
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Clustering Coefficient Using Cargo Data
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     Fig. 7b. Connectedness changes.    Fig. 7c. Coefficient changes. 

The second anomaly is derived from a news story where the CBP became 
suspicious of a shipment that was heading to El Salvador via Portland [13].  This 
anomaly is an arms shipment where again, the shippers are attempting to hide the true 
contents of their containers.  Similar to the first anomaly, there are certain manifest 
information not consistent with other similar (but legal) shipments.  In addition, the 
original port of departure (in this case, China) is removed from the manifest.  Again, 
these are all structural changes in the graph representation of the cargo data. 

For both of these anomalies, there are no significant deviations displayed using the 
average shortest path or eigenvalue metrics.  However, there are visible differences 
for the density, connectedness and clustering coefficient measurements (as shown in 
Figs. 7a, 7b and 7c).  Despite only minor modifications to the expected graph 
structure (a small substructure removed and another one inserted for the first anomaly, 
and a few smaller substructures removed along with an edge in the second anomaly), 
these measurements are able to individually show the anomalies. 

In the previous section, we presented combined measurements that provided us 
with a more comprehensive metric.  In this case, A5 is clearly the desired metric as it 
represents a measure of density, connectedness and the clustering coefficient – the 
three that individually show anomalous behavior.  Applying A5 to the cargo data and 
these anomalies, we get a value of .003 for the smuggling anomaly and .004 for the 
arms anomaly – similar to what was seen with the synthetic data of 2000 vertices. 

7   Future Work 

The graph properties presented in this paper are just a handful of the measurements of 
a graph that we can use.  Some of the more interesting ones that were not addressed in 
this paper are: rich club connectivity, node coreness, joint degree distribution, 
average neighbor connectivity, entropy, power laws and interestingness [14].  Each of 
these has shown usefulness in the comparative study of Internet topologies [10]. 

We have presented the graph properties that can be used to discover whether or not 
a graph might have an anomaly.  Of further importance is determining where the 
anomaly exists within the anomalous graph.  Since we have theorized that the 
properties of a graph tell us when something is inconsistent about a graph, this same 
idea can be applied to the subgraphs within a graph.  There has been a lot of research 
done on the art of partitioning graphs [15][16].  In order to support our graph property 
hypothesis by finding the actual anomaly in a graph, we have to be able to “divide up” 
a graph into smaller sub-graphs, identify which of these sub-graphs have anomalous 
graph properties, and further divide them until we are left with the anomaly.   
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8   Conclusions 

A graph-based approach to anomaly detection is an untapped area of research.  Work 
up until now has been limited, with most graph-based approaches focusing on finding 
patterns and looking at social networks or the web.  We feel that this approach of 
using graph properties can be extremely useful in the analysis of data for anomaly 
detection purposes.  Using just a handful of graph properties, we showed that the 
differences between what were defined as normal graphs and those that were 
intentionally altered can be shown to have severe property changes.  While the 
changes seem to vary based upon the type of modification that was performed, they 
can be used in conjunction with each other to paint a better picture of what is 
occurring, as was shown in the results from the real-world issue of analyzing cargo 
containers for illegal, and possibly terrorist-related, shipments.   
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