end of the link connected with a revolute to ground. Find the equations of motion with theta the generalized coordinate (Use the method of Lagrange)
$q=\{\theta\}, 1$ do system.

$$
\begin{aligned}
& T=1 / 2 m_{1} \vec{v}_{1} \cdot \vec{v}_{1}+\frac{\sum}{2} m_{2} \vec{v}_{2} \cdot \vec{v}_{2} \\
& \& V=m_{1} g \hat{r}_{1} \cdot \hat{n}_{2}+m_{2} g \hat{r}_{2} \cdot \hat{n}_{2}
\end{aligned}
$$

Need \vec{r}_{1}, \vec{r}_{2} as a function of θ.

* in geveral, this solution
is pore complex
$\vec{r}_{1}=r_{1} \hat{n}_{2}, \quad$ from symmetry: $\quad \alpha=180-20$
From law of cosines: $r_{1} \equiv \sqrt{2 L^{2}-2 L^{2} \cos (180-20)} \quad 13$ more couple,

$$
\begin{aligned}
& r_{1}= \pm \angle \sqrt{2(1+\cos 2 \theta)}= \pm 2 L \sqrt{\cos (\theta)^{2}} \\
& \text { Suse }+ \text { sol } \underbrace{\text { only }}= \pm 2 L \cos \theta=r_{1}
\end{aligned}
$$

$$
\vec{V}_{1}=-2 L \operatorname{sog} \hat{\theta}_{2}
$$

$$
\vec{r}_{2}=L \sin \hat{n}_{1}+L \cos \hat{n}_{2}, \vec{v}_{2}=L \cos \hat{n}_{1}-L \operatorname{so\theta } \dot{\theta} \hat{n}_{2}
$$

$$
T=\frac{1}{2} m_{1}\left(4 L^{2} s^{2} \theta \dot{\theta}^{2}\right)+\frac{1}{2} M_{2}\left(L^{2} c^{2} \theta \dot{\theta}^{2}+L^{2} s^{2} \theta \dot{\theta}^{2}\right)
$$

$$
=2 m_{1} L^{2} s^{2} \sigma \dot{\sigma}^{2}+\frac{1}{2} m_{2} L^{2} \dot{\theta}^{2}
$$

$$
V=\mu_{1} g 2 L c \theta+m_{2} g L C \theta
$$

$q=0$:

$$
\begin{aligned}
& q=\theta: \\
& 2 T / 2 \theta=4 m_{1} L^{2} \operatorname{soc\theta } \dot{\theta}^{2} \\
& 2 T / 2 \dot{\theta}=4 m_{1} L^{2} s^{2} \theta \dot{\theta}+m_{2} L^{2} \dot{\theta} \\
& d / d T\left(L^{T} / 2 \dot{\theta}\right)=4 m_{1} L^{2} \cdot 2 \operatorname{soc} \theta \dot{\theta}^{2}+4 m_{1} L^{2} s^{2} \theta \ddot{\theta}+m_{2} L^{2} \ddot{\theta} \\
& \frac{2 V}{2 \theta}=-m_{1} g 2 L s \theta-m_{2} g L s \theta \\
& Q_{\theta}=0 \\
& \left(4 m_{1} L^{2} s^{2} \theta+m_{2} L^{2}\right) \ddot{\theta}+8 m_{1} L^{2} \operatorname{soc\theta } \dot{\theta}^{2}-4 m_{1} L^{2} \operatorname{soc\theta } \dot{\theta}^{2} \\
& -\left(2 m_{1}+m_{c}\right) g L s \theta=0
\end{aligned}
$$

or

$$
\left(4 m_{1} s^{2} \theta+m_{2}\right) L^{2} \ddot{\theta}+4 m_{1} L^{2} \operatorname{soc} \theta \dot{\theta}^{2}-\left(2 m_{1}+m_{2}\right) g^{2} \sin =0
$$

EOM

$$
\begin{aligned}
& 1^{s+}, R_{n c, 0} ; Z^{n d} R_{a 3, \alpha} \\
&=R_{a}^{n}=R_{b}^{a}=\left[\begin{array}{ccc}
c \alpha-s \alpha & 0 \\
\alpha \alpha c \alpha & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \vec{q}=\{r, \sigma\}^{\top}
\end{aligned}
$$

Kinematic constraint:

$$
\begin{gathered}
\dot{2}=\vec{V}_{1} \cdot \hat{b}_{2} \quad k \vec{v}_{1}=f(r, 0) \\
\vec{r}_{1}=-r \hat{b}_{2} \quad{ }^{n} \dot{w}^{b}=\dot{\theta} \hat{a}_{2} \\
\left.=\begin{array}{c}
s \alpha \\
c \alpha \\
0
\end{array}\right] \\
\vec{V}_{1}=-\dot{r} \hat{b}_{2}+\left(\begin{array}{c}
s \alpha \dot{\theta} \\
c \alpha \dot{\theta} \\
0
\end{array}\right) \times\left(\begin{array}{c}
0 \\
-r \\
0
\end{array}\right) \\
\vec{V}_{1}=b\left\{\begin{array}{c}
0 \\
-\dot{r} \\
-r s \alpha \dot{\theta}
\end{array}\right), \vec{V}_{2}=-i \hat{N}_{2}=+\dot{r} \hat{n}_{2}
\end{gathered}
$$

$$
\begin{aligned}
& T=\frac{1}{2} m_{1} \vec{v}_{1} \cdot \vec{v}_{1}+1_{2} m_{2} \vec{V}_{2} \cdot \vec{V}_{2} \\
& T=\frac{1}{2} m_{1}\left(\dot{b}^{2}+r^{2} s^{2} \alpha \dot{\theta}^{2}\right)+\frac{1}{2} m_{2} \dot{r}^{2} \\
& V=m_{1} g(-c \alpha r)+m_{2} g(L-r)
\end{aligned}
$$

$$
z=L-r
$$

(L= iotol string length)

$$
\vec{r}_{1}=-r \hat{b}_{2}=\left\{\begin{array}{c}
a \\
+s \alpha r \\
-c<r \\
0
\end{array}\right]
$$

\& gravixy in $-\hat{a}_{2}$
$q=r$

$$
\begin{aligned}
& 2 T / \partial r=m_{1} r s^{2} \alpha \dot{\theta}^{2} \\
& 2 T / 2 \dot{r}=m_{1} \dot{r}+m_{2} \dot{r}
\end{aligned}
$$

$$
\begin{aligned}
& q=\theta \\
& 2 \pi / 2 \sigma=0 \\
& 2 T / 2 \dot{\theta}=M_{1} r^{2} s^{2} \alpha \dot{\theta}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d+}(2 T / 2 i)=\left(m_{1}+m_{2}\right)^{60} r^{0} \\
& d / a+\left(2 \frac{\pi}{2 \dot{\theta}}\right)=m_{1} r^{2} s^{2} \alpha \ddot{\theta}+2 m_{1} r s^{2} \alpha \dot{o} \dot{r} \\
& \frac{\partial V}{2 r}=-m_{1} g c \alpha-m_{2} g \\
& Q_{r}=0 \\
& \frac{2 V}{2 \theta}=0 \\
& Q_{\theta}=0 \\
& \left(m_{1}+m_{2}\right)^{i 0}=m_{1} r s^{2} \alpha \dot{\theta}^{i} \\
& -\left(m, c \alpha+m_{2}\right) g=01 \\
& m_{1} r^{2} s^{2} \alpha \ddot{\theta}+2 m_{1} r s^{2} \alpha \dot{\theta} r^{\circ} \\
& =0 \\
& \text { - EOMI } \\
& \text {. . EGM2 }
\end{aligned}
$$

