Chap 5 Practice: $5.16,5.17$
$5.16{ }^{\text {Sunday, July } 2,2017}$ Find the EOM 9 for the block w/ pendulum when the block slips w/ Coulomb friction.

$$
R_{b}^{n}=\left[\begin{array}{ccc}
c \theta & -s \theta & 0 \\
50 & c \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

2 bodies:

$$
\begin{equation*}
\text { uk's, } \underbrace{F_{21 x} F_{21 y} F_{12 \times} F_{12 y}}_{\text {equal } f \sigma_{p p} .} ; F_{g 1}, T_{g 1}, f, a_{g 1 x}, \alpha_{2} \tag{9}
\end{equation*}
$$

$$
\begin{aligned}
\text { eq's } \quad 6 \text { eon } & +\begin{array}{c}
2 \text { egad } \\
\vdots
\end{array} \\
& + \text { K coulomb law }
\end{aligned}
$$

Kinematics:

$$
\left.\begin{aligned}
& \vec{r}_{1}=x \hat{n}_{1}, v_{1}=\dot{x} n, \quad \vec{a}_{g 1}=\ddot{x} \hat{n}_{1} \\
& \vec{r}_{g 2}=x \hat{n}_{1}-l / 2 \hat{b}_{2} ; \vec{v}_{g 2}=\dot{x} \hat{n}_{1}-\frac{l}{2} \dot{o} \hat{b}_{1}
\end{aligned}\right|^{n}=\dot{o} \hat{\sigma}_{3}
$$

For:
-itch opposes Vga dir.

EON:

$$
\begin{aligned}
& \text { m: } \\
& \text { (1) } F_{2 \mid x}-\mu N_{g 1}=\mu \ddot{x} \\
& \text { (2) } F_{2 \mid y}+N_{g 1}-M_{1 g}=0
\end{aligned}
$$

$$
\text { (3) } T_{g 1}=0
$$

(4) $=C \theta F_{21 x}-S \theta F_{21 y}^{-s o n}=\mu_{2}\left(\begin{array}{l}0^{0} \\ \lambda \\ C O\end{array}-\frac{e}{2}\right.$
(5) $+S \theta F_{21 x}-C \theta F_{21 y}=\mu_{2}\left(-\ddot{x} S \theta+\frac{1}{2} \dot{\theta}^{2}\right)$
let $F_{12 x}=-F_{21} x$ - cony
G)

$$
\vec{F}=c^{-1} \vec{b}
$$

$5-17$
A wheel of mass m and radius R rotates about two axes with constant Rotation rates theta_dot, psi_do, calculate the required moment Necessary to maintain this motion. Ignore gravity
Find Mo

$$
R_{a}^{n}=\left[\begin{array}{ccc}
c \theta & -5 \theta & 0 \\
30 & c 0 & 0 \\
0 & 0 & 1
\end{array}\right], R_{b}^{a}=\left[\begin{array}{ccc}
c \psi & 0 & 5 \psi \\
0 & 1 & 0 \\
-34 & 0 & c 4
\end{array}\right]
$$

$$
\begin{aligned}
& =\left(+\operatorname{so} F_{21 x}-\operatorname{co} F_{2, y}\right) \frac{l}{2}=I_{2} \theta \\
& 1 / i^{\pi} \mu l^{2}
\end{aligned}
$$

$$
\begin{aligned}
& c \quad \vec{F}=\vec{b}
\end{aligned}
$$

$$
-\left[\begin{array}{ccc}
0 & - & 1 \\
0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{lll}
-34 & 0 & c 4
\end{array}\right]
$$

* Mo will have to account for both $\dot{\theta}$ \& $\dot{\psi}$ motion. Note that an input about \hat{b}_{2} would be needed.

First, kinematics:

$$
\begin{aligned}
& { }^{n} \dot{\omega}^{b}=\dot{\theta} \hat{a}_{3}+\dot{\psi} \hat{b}_{2} \\
& n_{\omega^{b}}^{b}=\left(\begin{array}{c}
-s \psi \dot{\theta} \\
\dot{\psi} \dot{\theta} \\
c \psi \dot{\theta}
\end{array}\right) ; \quad n_{\alpha}^{b}=\left\{\begin{array}{c}
-\dot{\psi} \dot{\theta} c \psi-s \dot{\psi}^{\circ} \\
\dot{\psi} \\
-\dot{\psi} \dot{\theta} s \psi+c \psi \dot{\theta}
\end{array}\right) \quad \begin{array}{c}
\text { but } \\
\dot{\psi}=\text { cost } \\
\dot{\theta}=\text { cost }
\end{array} \\
& \vec{V}_{g}=\frac{d}{d t}\left(\bar{r}_{j}\right)=\frac{d}{d t}\left(l \hat{a}_{1}\right)=\dot{o}^{0} \hat{a}_{3} \times l \hat{a}_{1}=\dot{\theta} l \hat{a}_{2} \\
& \vec{a}_{g}=\ddot{\theta} l \hat{a}_{2}-\dot{\theta}^{2} l \hat{a}_{1} \rightarrow\left[\begin{array}{ccc}
c \psi & 0 & -s \psi^{k} \\
0 & 1 & 0 \\
s \psi & 0 & c \psi
\end{array}\right]\left[\begin{array}{c}
-\dot{\theta} l \\
\dot{\theta} l \\
0
\end{array}\right]= \\
& \vec{a}_{g}=\left(\begin{array}{ccc}
-c \psi & \dot{\theta} & l \\
\ddot{\theta} & l \\
-S \psi & \dot{\theta} & l
\end{array}\right)
\end{aligned}
$$

FBD wheel:

$$
\begin{aligned}
& F_{b_{1}}=-n c \psi \dot{\theta}^{2} l \\
& F_{b 2}=0 \\
& F_{b 3}=-n s \psi \dot{\theta}^{2} l \\
& M_{b 1}=I_{1} \alpha_{1}-\left(\mathbb{I}_{2}-I_{3}\right) \omega_{2} \omega_{3} \\
& M_{b 2}=I_{2} 0-\left(I_{3} I_{1}\right) \dot{\omega}_{3} w_{1} \\
& M_{b 3}=I_{3} \alpha_{3}-\left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}
\end{aligned}
$$

$$
\begin{aligned}
M_{b_{1}} & =I_{1}(-\dot{\psi} \dot{\theta}<\psi)-\left(I_{2}-I_{3}\right) \dot{\psi} \dot{\theta} c \psi \\
M_{b_{2}} & =0 \\
M_{b 3} & =I_{3}(-\dot{\psi} \dot{\theta} s \psi)-\left(I_{1}-I_{2}\right)(-s \psi \dot{\theta} \dot{\psi})
\end{aligned}
$$

put io $\{a\}$ coordinates

$$
\begin{array}{r}
{\left[\begin{array}{ccc}
c \psi & 0 & s \psi \\
0 & 1 & 0 \\
-s \psi & 0 & c \psi
\end{array}\right]\left[\begin{array}{c}
-m c \psi \dot{\theta} l \\
0 \\
-m s \psi \dot{\theta} l
\end{array}\right]=\left[\begin{array}{c}
-m \dot{\theta} l \\
0 \\
0
\end{array}\right]={ }^{a} F_{g}} \\
\& m_{g}=\left[\begin{array}{c}
c \psi m_{b 1}+s \psi m_{b_{3}} \\
0 \\
-s \psi m_{b l}+c \psi m_{b 1}
\end{array}\right] \\
L a M_{0}=l \hat{a}_{1} x^{a} F_{g}+m_{g}
\end{array}
$$

