Practice 3.1 3.5, 3.10 Homework 3.4, 3.6, 3.18
3.4 A spacecraft spins about vertical axis e3 with constant rate cap_omega. A solar panel is deployed by rotation about two nonintersecting axes separated by a distance b.
a) Find the angular acceleration of the panel for arbitrary theta
b) Find the velocity and acceleration of point P for alpha_dot, theta_dot and cap_omega constant.
c) Describe the orientation of the solar panel relative to the spacecraft as a function of alpha and theta.

let Ω^{\prime} be
千 associated ω / Ω

$$
\begin{aligned}
& R_{a}^{n}=\left[\begin{array}{ccc}
c \Omega^{\prime} & -s \Omega^{\prime} & 0 \\
s \Omega^{\prime} & c \Omega^{\prime} & 0 \\
0 & 0 & 1
\end{array}\right], \quad \mathbb{R}^{a}=\left[\begin{array}{ccc}
c \theta & 0 & s \theta \\
0 & 1 & 0 \\
-\operatorname{so} & 0 & c o
\end{array}\right], \quad R_{b}^{c}=\left[\begin{array}{ccc}
c \alpha & -s \alpha & 0 \\
s \alpha & c \alpha & 0 \\
0 & 0 & 1
\end{array}\right] \\
& R_{b}^{a}=\left[\begin{array}{ccc}
\operatorname{coc} \alpha & -\cos \alpha & s o \\
s \alpha & \cos & 0 \\
-\operatorname{soc} \alpha & +\operatorname{sos} \alpha & \operatorname{co}
\end{array}\right] \\
& n_{\omega}{ }_{\omega}={ }^{n} \omega^{a}+{ }_{\omega} \omega^{c}+\hat{\omega}^{b}=\Omega a_{3}+\dot{\sigma}_{2}+\dot{\alpha}_{3} \hat{b}_{3} \\
& =\left(\begin{array}{ccc}
-\operatorname{soc} & \alpha & \Omega \\
\operatorname{sos} & \alpha & \Omega \\
c & 0 & \Omega
\end{array}\right)+\left(\begin{array}{cc}
\operatorname{s} \alpha & \theta \\
c \alpha & \dot{\theta} \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
\alpha
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& r=\hat{c}_{2}-\hat{b} \hat{c}_{1}+\hat{c}_{3}+d b_{1} \\
& V=\frac{d}{d t}(r)=0+{ }^{n} \omega^{c} \times\left(\begin{array}{c}
0 \\
+c \\
c
\end{array}\right]+{ }^{n} \omega^{b} \times\left(\begin{array}{l}
d \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

or

$$
\begin{aligned}
& \vec{V}=c\left[\begin{array}{c}
\dot{\theta} c-\cos a \\
-\cos b+\operatorname{son} c \\
-\operatorname{son} a+\dot{\theta} b
\end{array}\right]+ \\
& b+\left\{\begin{array}{c}
\theta \\
\operatorname{cor} d \\
\operatorname{sos} \alpha \Omega d-s \alpha \dot{\theta} d
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\begin{array}{c}
-\operatorname{soc} \alpha \Omega+\operatorname{soc} \\
0 \\
\operatorname{sos} \Omega \\
\operatorname{co} \Omega+c \alpha \dot{0} \\
\operatorname{co} \\
\hline \alpha
\end{array}{ }^{b} \vec{V}\right.
\end{aligned}
$$

3.6 The two-link serial mechanism rotates about two axes as shown. Find the velocity and acceleration for the end point B when theta1_double_dot=theta2_double_dot = 0;

$$
\Omega_{e}^{n}=\left[\begin{array}{ccc}
c_{1} & -s_{1} & 0 \\
s_{1} & c_{1} & 0 \\
0 & 0 & 1
\end{array}\right], R_{b}^{e}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{2} & -s_{2} \\
0 & s_{2} & c_{2}
\end{array}\right]
$$

$$
\begin{aligned}
&{ }^{n} \bar{\omega} b=\dot{\theta}_{1} \hat{e}_{3}+\dot{\theta}_{2} \hat{b} \\
&=\left[\begin{array}{c}
\dot{\theta}_{2} \\
s_{2} \\
\dot{\theta}_{1} \\
c_{2} \\
\dot{\theta}_{1}
\end{array}\right] \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{lll}
3 & 2 & 1 \\
c & 2 \\
c_{2} & \theta_{1}
\end{array}\right) \\
& n^{-b}=\left(\begin{array}{l}
\dot{\theta}_{2} \\
\dot{\theta}_{1} \dot{\theta}_{2} c_{2}+s_{2} \ddot{\theta}_{1} \\
\dot{\theta}_{1} \dot{o}_{2} s_{2}+c_{2} \ddot{\theta}_{1}
\end{array}\right) \\
& \vec{r}=l_{1} \hat{e}_{1}+l_{2} \hat{b}_{2} \\
& \begin{array}{l}
\vec{V}_{p}=\frac{d}{d+}(r)=0+\dot{\theta}_{1} \hat{e}_{3} \times l_{1} \hat{e}_{1}+\left(\begin{array}{c}
\dot{\theta}_{2} \\
s_{2} \dot{\theta}_{1} \\
c_{2} \dot{\theta}_{1}
\end{array}\right) \times\left(\begin{array}{l}
0 \\
l_{2} \\
0
\end{array}\right)
\end{array} \\
& =\left(\begin{array}{c}
0 \\
\dot{\theta}, l_{1} \\
0
\end{array}\right]+\left(\begin{array}{c}
-c_{2} \dot{\theta}_{1} l_{2} \\
0 \\
\dot{\theta}_{2} l_{2}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{2} & s_{2} \\
0 & -s_{2} & c_{2}
\end{array}\right]\left\{\begin{array}{c}
-\dot{\theta}_{1}^{2} l_{1} \\
\ddot{\theta}_{1} l_{1} \\
0
\end{array}\right)^{b}+\left\{\begin{array}{cc}
\dot{\theta}_{1} \dot{\theta}_{2} s_{2} l_{2}-c_{2} \ddot{\theta}_{1} l_{2}+s_{2} \dot{\theta}_{1} \dot{\theta}_{2} l_{2} \\
0 & -c_{2}^{2} \dot{\theta}_{1}^{2} l_{2} \\
-\dot{\theta}_{2}^{2} l_{2} \\
\ddot{\theta}_{2} l_{2} & +s_{2} c_{2} \dot{\theta}_{1}^{2} l_{2}
\end{array}\right] \\
& A_{p}=\quad\left\{\begin{array}{l}
-\dot{\theta}_{1}^{2} l_{1}+\dot{\theta}_{1} \dot{\theta}_{2} s_{2} l_{2}-c_{2} \ddot{\theta}_{1} l_{2}+s_{2} \dot{\theta}_{1} \dot{\theta}_{2} l_{2} \\
c_{2} \ddot{\theta}_{1} l_{1}=c_{2}^{2} \dot{\theta}_{1}^{2} l_{2}-\dot{\theta}_{2}^{2} l_{2} \\
-s_{2} \ddot{\theta}_{1} l_{1}+\ddot{\theta}_{2} l_{2}+s_{2} c_{2} \dot{\theta}_{1}^{2} l_{2}
\end{array}\right\}
\end{aligned}
$$

3.18 write a matlab program that will animate a kinematic model of the box falling off the ledge with constant angular velocity . $1 \mathrm{rad} / \mathrm{s}$

See matlab tutorial on 3D animation

