Chap 5 Lagrange Rigid Body $5-\underbrace{24,25, \frac{28,32}{1 H W}}_{\text {prattle }}$ 5-24 A thin rod with pin joint at one end Is spun about a vertical axis with constant angular velocity cap_omega. For generalized coordinate $q=$ theta, solve the em using Lagrange's equations
o) $q=0$
1)

$$
\begin{aligned}
& T=\frac{1}{2} m \vec{V}_{g} \cdot \vec{v}_{g}+\frac{1}{2} \bar{\omega} \times I_{g} \bar{\omega} \\
& \vec{r}=l / \tau \hat{e}_{3} ; \quad n-\omega^{e}=\Omega \hat{a}_{1}+\dot{\sigma} \hat{e}_{2} \\
& B_{e}^{a}=\left[\begin{array}{ccc}
c \theta & 0 & 5 \theta \\
0 & 1 & 0 \\
-50 & 0 & c \theta
\end{array}\right] \\
& { }^{n} \bar{\omega}^{e}=e\left[\begin{array}{c}
c \theta \Omega \\
\dot{\theta} \\
s o r
\end{array}\right] \\
& \vec{V}_{y}=\left[\begin{array}{c}
\theta / 2 \theta \\
-1 / 2 \cos \\
0
\end{array}\right], \quad(s o \Omega)=\frac{1}{12} n^{2}\left[\begin{array}{lll}
1 & 0 & c \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& T=\frac{1}{2} n \frac{l^{2}}{4}\left(\dot{\theta}^{2}+c^{2} \theta r^{2}\right)+\frac{1}{2} \cdot \frac{1}{12} n l^{2}\left(c^{2} 0 r^{2}+\dot{\theta}^{2}\right) \\
& V=-\mu g^{l / 2}<\theta \\
& q=0 \text { : } \\
& L T / 2 \theta=n^{12} / 4\left(-\cos \theta \Omega^{2}\right)+\frac{m l^{2}}{12}\left(\cos \theta \pi^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& d / d+(2 T / 2 \theta)=\mu l^{2} / 3 \ddot{\theta} \\
& 2 L / 2 \theta=\quad n g^{R / 2 S \theta} \\
& \frac{M l^{2}}{3} \ddot{\theta}-\frac{m l^{2}}{6} \cos \theta \mu^{2}+m g^{l / 2} \sin =0
\end{aligned}
$$

5-25: The thin rod is constrained with ends to lie along the horizontal and vertical walls as shown. The bottom end is attached to a liner spring lying along the horizontal axis with unstretched length $\mathrm{L} / 3$. solve the equations of motion for generalized coordinates $q=u s i n g$ Lagrange. vb
(0) $q=x$
(1) $T=\frac{1}{2} m \vec{V}_{g} \cdot \vec{v}_{g}+\frac{1}{2} \bar{\omega} \cdot I_{g} \bar{\omega}$

$$
V=m g h
$$

(5)

$\Leftrightarrow \vec{r}=\frac{L}{2} c \theta \hat{h}_{1}+\frac{L}{2} \sin \hat{n}_{2}$

$$
\xi \quad x=L \cos
$$

$\vec{V}=-L / 2 \operatorname{si\theta }+L / 2 \cos \dot{\theta}$

$$
I=1 / 12 m L^{2}
$$

$$
\begin{aligned}
& T=\frac{1}{2} n L^{2} / 4 \dot{\theta}^{2}+\frac{1}{2} \frac{1}{12} n L^{2} \dot{\theta}^{2}=\frac{1}{2} n L^{2} / 3 \dot{\theta}^{2} \\
& V=m g L / 2 S \theta+\frac{1}{2} k(x-(L-L / 3))
\end{aligned}
$$

$q=\theta:$

$$
\begin{aligned}
& \partial T / 2 \theta=0 \\
& 2 T / 2 \dot{\theta}=m L 2 / 3 \dot{\theta} \\
& 2 / \partial()=m L 2 / 3 \ddot{\theta} \\
& \frac{2 v}{2 \theta}=-m g L / 2 c \theta
\end{aligned}
$$

