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Part VI: Velocity and Acceleration Analysis of Mechanisms 

 

This section will review the most common and currently practiced methods for completing the 

kinematics analysis of mechanisms; describing motion through velocity and acceleration.  This 

section of notes will be divided among the following topics: 

 

1) Overview of velocity and acceleration analysis of mechanisms 

2) Velocity analysis: analytical techniques 

3) Velocity analysis: Classical techniques (instant centers, centrodes, etc.) 

4) Static force analysis, mechanical advantage 

5) Acceleration analysis: analytical techniques 

6) Acceleration analysis, Classical techniques 

 

 

 

 

 

 

 

 

 

1) Overview of velocity and acceleration analysis of mechanisms: 

 

Important features associated with velocity and acceleration analysis: 

 

a. Kinematics: 

 

 

 

b. Types of equations that result 

 

 

 

c. General approach/strategy 

 

 

 

d. Uses/Applications 
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2) Velocity Analysis: Analytical Techniques 

 

The standard approach to velocity analysis of a mechanism is to take derivative of the position 

equations w.r.t. time.  (Note, alternative approaches, such as those termed influence coefficients, 

can be performed by first taking the partial derivative with respect to an alternate parameter 

multiplied by the time derivative of that parameter) 

 

The position equations that we consider are predominantly loop closure and constraint equations.  

The approach will take the derivatives of these equations, expand into scalar equations and solve 

for the unknowns (all problems will be linear in the unknowns!). 

 

Process:  

1) Take first derivative of a loop equation: 

 

 

 

 

 

2) move knowns to one side of equation, unknowns to the other side 

 

 

 

 

 

 

3) Expand into scalar equations: 

 

 

 

 

 

4) Cast into matrix form and solve: 
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Review: Taking time derivatives of a vector.   

 

In cartesian vector notation: 

�̅� = 𝑟�̂� = 𝑟�̂� 

𝐯 =
𝑑

𝑑𝑡
�̅� 

 

 

 

 

 

 

 

In complex polar notation: 

�̅� = 𝑟𝑒𝑖𝜃 

𝐯 =
𝑑

𝑑𝑡
�̅� 

 

 

 

 

 

 

 

 

 

 

 

 

   

Expand into scalar components: 

 

 

 

 

 

 

Summary: 

 

Table: Summary of Vector Derivative and Scalar Components 
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Explanation of Velocity Terms – or – The Dynamics of the Dukes: 

 
 

 

 

For a loop equation: 

4132 rrrr


  

44113322

44113322
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Performing Velocity Analysis – The Process:
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Example 1:  Bobcat 650S loader: http://www.youtube.com/watch?v=aqK0qsXH3e4 

 
First, consider an extremely simplified model that ignores the bucket, ignores the input cylinder, 

and assumes that links 1 and 3 are horizontal, link 4 is vertical and link 2 is at 45 degrees.  Also, 

assume link 2 is the input.   

 
 Given r1 = 161 cm; r2 = 141 cm, r3 = 120 cm, r4 = 100 cm, 2 = 45deg, �̇�2 = .5 rad/s, r3p = 200, 

3p = 135deg 

  

 

P 

r2 

r3 

r4 

r1 

p r3p 

45 
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Solution: 

Step 1: get the position solution: 

1. Schematic (see above) 

2. Mobility: 𝑀 = 3(4 − 1) − 2(4) − 0 = 1 

3. Vector model (see above) 

4. position unknowns  𝜃3, 𝜃3𝑝 , 𝜃4;  𝜃2, = 𝑖𝑛𝑝𝑢𝑡 
5. Equations 

𝐿1: 𝐫1 + 𝐫2 + 𝐫3 + 𝐫4 = 0 

𝐶𝐸: 𝜃3𝑝 = 𝜃3 + 𝛼3𝑝 

 

Step 2: List velocity unknowns: 

�̇�3, �̇�3𝑝, �̇�4, 𝐕𝒑;  �̇�2, = 𝑖𝑛𝑝𝑢𝑡 

five unknowns  - need five equations. 

Step 3: Identify and write equations: (note r1 through r4 are constant length and theta1 is constant 

angle so derivative is 0) 
𝑑

𝑑𝑡
(𝐿1): 𝑟2�̇�2𝑖𝑒

𝑖𝜃2 + 𝑟3�̇�3𝑖𝑒
𝑖𝜃3 + 𝑟4�̇�4𝑖𝑒

𝑖𝜃4 = 0 

2 equations from loop vector equation 
𝑑

𝑑𝑡
(𝐶𝐸): �̇�3𝑝 = �̇�3  

1 equation from constraint equation  

𝐕𝒑 =
𝑑

𝑑𝑡
(𝑂𝑃⃗⃗⃗⃗  ⃗) =

𝑑

𝑑𝑡
(𝐫2 + 𝐫3𝑝) =  𝑟2�̇�2𝑖𝑒

𝑖𝜃2 + 𝑟3𝑝�̇�3𝑝𝑖𝑒
𝑖𝜃3𝑝 

2 equations of a vector chain from ground to point P 

 

Total = 5 equations 

 

Step 4: Expand equations into scalar form:  
𝑑

𝑑𝑡
(𝐿1): 𝑟2�̇�2𝑖𝑒

𝑖𝜃2 + 𝑟3�̇�3𝑖𝑒
𝑖𝜃3 + 𝑟4�̇�4𝑖𝑒

𝑖𝜃4 = 0 

𝐿1𝑥: − 𝑟2�̇�2𝑠2 − 𝑟3�̇�3𝑠3 − 𝑟4�̇�4𝑠4 = 0 

𝐿1𝑦: + 𝑟2�̇�2𝑐2 + 𝑟3�̇�3𝑐3 + 𝑟4�̇�4𝑐4 = 0 

𝐶𝐸: �̇�3𝑝 = �̇�3 

𝐕𝒑 =
𝑑

𝑑𝑡
(𝑂𝑃⃗⃗⃗⃗  ⃗) =

𝑑

𝑑𝑡
(𝐫2 + 𝐫3𝑝) =  𝑟2�̇�2𝑖𝑒

𝑖𝜃2 + 𝑟3𝑝�̇�3𝑝𝑖𝑒
𝑖𝜃3𝑝 

𝑉𝑝𝑥 = − 𝑟2�̇�2𝑠2 − 𝑟3𝑝�̇�3𝑝𝑠3𝑝 

𝑉𝑝𝑦 = 𝑟2�̇�2𝑐2 + 𝑟3𝑝�̇�3𝑝𝑐3𝑝 

 

 

Step 5: Solve:  

𝐿1𝑥: −141 ∗ 0.5 ∗ sin (45) − 120 ∗ �̇�3 ∗ sin(0) − 100 ∗ �̇�4 ∗ sin (−90) = 0 

𝐿1𝑦: +141 ∗ 0.5 ∗ cos(45) + 120 ∗ �̇�3 ∗ cos(0) + 100 ∗ �̇�4 ∗ cos (−90) = 0 

 

𝐿1𝑥: −49.85 − 0 + 100 ∗ �̇�4 = 0-�̇�4 = .4985 

𝐿1𝑦: +49.85 + 120 ∗ �̇�3 + 0 = 0 �̇�3 = −.4154 

𝐶𝐸: �̇�3𝑝 = �̇�3   �̇�3𝑝 = −.4154 

 

𝑉𝑝𝑥 = −141 ∗ 0.5 ∗ sin(45) − 200 ∗ −.4154 ∗ sin(135) = 8.896 
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𝑉𝑝𝑦 = +141 ∗ 0.5 ∗ cos(45) + 200 ∗ −.4154 ∗ cos(135) = 108.6 

Discussion: 

The results indicate that the loader pin P is moving up and slightly to the right.  Two important 

notes: 

1) The solution is linear in the velocities.  This means that if the input velocity were doubled, the 

output velocity would double. 

2) This solution is valid only at the position shown in the figure above.  As the loader moves, this 

solution is no longer valid, the angles need to be updated.  This is demonstrated in example 3. 

 

Example #2: 
 Given the floating arm trebuchet shown as a schematic below.  Assume r2,  r2_dot are the inputs, 

r1 = 173cm, r2 = 100cm, theta3 = 150 deg., r3 =  200cm, r3b 300 cm, and r2_dot = 250 cm/s solve 

for the unknown velocity terms in the model equations and the velocity of P, x and y coordinates.  

 
 

Solution: 

Step 1: get the position solution: 

1. Schematic (see above) 

2. Mobility: 𝑀 = 3(4 − 1) − 2(4) − 0 = 1 

3. Vector model (see above) 

4. Position unknowns  𝑟1, 𝜃3, 𝜃3𝑏;  𝑟2, = 𝑖𝑛𝑝𝑢𝑡 
5. Equations 

𝐿1: − 𝐫1 + 𝐫2 + 𝐫3 = 0 

𝐶𝐸: 𝜃3𝑏 = 𝜃3 + 𝛼3 
(solve by inspection using the given values above) 

Step 2: List velocity unknowns: 

�̇�1, �̇�3, �̇�3𝑏 , 𝐕𝒑;  �̇�2, = 𝑖𝑛𝑝𝑢𝑡 

five unknowns  - need five equations. 

Step 3: Identify and write equations: 

r1 

r2 

r3 

r3b 

3=0 

P 
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𝑑

𝑑𝑡
(𝐿1) : − �̇�1𝑒

𝑖𝜃1 + �̇�2𝑒
𝑖𝜃2 + 𝑟3�̇�3𝑖𝑒

𝑖𝜃3 = 0 

2 equations from loop vector equation 
𝑑

𝑑𝑡
(𝐶𝐸): �̇�3𝑏 = �̇�3  

1 equation from constraint equation  

𝐕𝒑 =
𝑑

𝑑𝑡
(𝑂𝑃⃗⃗⃗⃗  ⃗) =

𝑑

𝑑𝑡
(𝐫2 + 𝐫3 + 𝐫3𝑏) =  𝑟2�̇�2𝑖𝑒

𝑖𝜃2 + 𝑟3�̇�3𝑖𝑒
𝑖𝜃3 + 𝑟3𝑏�̇�3𝑏𝑖𝑒

𝑖𝜃3𝑏  

2 equations of a vector chain from ground to point P 

 

Total = 5 equations 

 

Step 4: Expand equations into scalar form:  
𝑑

𝑑𝑡
(𝐿1) : − �̇�1𝑒

𝑖𝜃1 + �̇�2𝑒
𝑖𝜃2 + 𝑟3�̇�3𝑖𝑒

𝑖𝜃3 = 0 

𝐿1𝑥: −�̇�1𝑐1 + �̇�2𝑐2 − 𝑟3�̇�3𝑠3 = 0 

𝐿1𝑦: −�̇�1𝑠2 + �̇�2𝑠2 + 𝑟3�̇�3𝑐3 = 0 

𝐶𝐸: �̇�3𝑏 = �̇�3 

𝐕𝒑 =
𝑑

𝑑𝑡
(𝑂𝑃⃗⃗⃗⃗  ⃗) =

𝑑

𝑑𝑡
(𝐫2 + 𝐫3 + 𝐫3𝑏) = �̇�2𝑒

𝑖𝜃2 + 𝑟3�̇�3𝑖𝑒
𝑖𝜃3 + 𝑟3𝑏�̇�3𝑏𝑖𝑒

𝑖𝜃3𝑏 

𝑉𝑝𝑥 = +�̇�2𝑐2 − 𝑟3�̇�3𝑠3 − 𝑟3𝑏�̇�3𝑏𝑠3𝑏 

𝑉𝑝𝑦 = +�̇�2𝑠2 + 𝑟3�̇�3𝑠3 + 𝑟3𝑏�̇�3𝑏𝑐3𝑏 

 

 

Step 5: Solve:  

𝐿1𝑥: −�̇�1 ∗ cos(180) + 250 ∗ cos(−90) − 200 ∗ �̇�3sin (150) = 0 

𝐿1𝑦: : −�̇�1 ∗ sin(180) + 250 ∗ sin(−90) + 200 ∗ �̇�3 ∗ cos (150) = 0 

 

𝐿1𝑥: +�̇�1 + 0 − 200 ∗ �̇�3 ∗ .5 = 0-�̇�1 = −144.3 

𝐿1𝑦: : −�̇�1 ∗ 0 − 250 − 173.2 ∗ �̇�3 = 0 �̇�3 = −1.443 

 

𝐶𝐸: �̇�3𝑏 = �̇�3   �̇�3𝑏 = −1.443 
 

𝑉𝑝𝑥 = 250 ∗ cos(−90) − (200 + 300) ∗ −1.443 ∗ sin(150) = 360.75 

𝑉𝑝𝑦 =  250 ∗ sin(−90) + (200 + 300) ∗ −1.443 ∗ cos(150) = 374.84 

Discussion: 

The results indicate that point P on the P is moving up and to the right.  Two important notes: 

1) The solution is linear in the velocities.  This means that if the input velocity were doubled, the 

output velocity would double. 

2) This solution is valid only at the position shown in the figure above.  As the trebuchet moves, 

this solution is no longer valid, the angles need to be updated.  This is demonstrated in example 

3. 
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Example 3:  Bobcat 650S loader: http://www.youtube.com/watch?v=aqK0qsXH3e4 

Consider again the Bobcat 650 S loader with a simplifed version that ignores the bucket and 

input cyliner as shown in the figure below.  This example will now consider an arbitary 

orientation for links 1-4.  Given the fixed link lengths, input angle of link 2, input angular 

velocity of link 2, set up the equations to solve for the velocity unknowns in the model equations, 

and for the velocity of P.  Describe a solution procedure for these equations. 

 

 
 

  

 

 

P 

r2 

r3 

r4 

r1 

r3c 

c 
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Solution: 

Step 1: get the position solution: 

1. Schematic (see above) 

2. Mobility: 𝑀 = 3(4 − 1) − 2(4) − 0 = 1 

3. Vector model (see above) 

4. position unknowns  𝜃3, 𝜃3𝑝 , 𝜃4;  𝜃2, = 𝑖𝑛𝑝𝑢𝑡 
5. Equations 

𝐿1: 𝐫1 + 𝐫2 + 𝐫3 + 𝐫4 = 0 

𝐶𝐸: 𝜃3𝑝 = 𝜃3 + 𝛼3𝑝 

 

Step 2: List velocity unknowns: 

�̇�3, �̇�3𝑝 , �̇�4, 𝐕𝒑;  �̇�2 = 𝑖𝑛𝑝𝑢𝑡 

five unknowns  - need five equations. 

Step 3: Identify and write equations: 
𝑑

𝑑𝑡
(𝐿1): 𝑟2�̇�2𝑖𝑒

𝑖𝜃2 + 𝑟3�̇�3𝑖𝑒
𝑖𝜃3 + 𝑟4�̇�4𝑖𝑒

𝑖𝜃4 = 0 

2 equations from loop vector equation 
𝑑

𝑑𝑡
(𝐶𝐸): �̇�3𝑝 = �̇�3  

1 equation from constraint equation  

𝐕𝒑 =
𝑑

𝑑𝑡
(𝑂𝑃⃗⃗⃗⃗  ⃗) =

𝑑

𝑑𝑡
(𝐫2 + 𝐫3𝑝) =  𝑟2�̇�2𝑖𝑒

𝑖𝜃2 + 𝑟3𝑝�̇�3𝑝𝑖𝑒
𝑖𝜃3𝑝 

2 equations of a vector chain from ground to point P 

 

Total = 5 equations 

 

Step 4: Expand equations into scalar form:  
𝑑

𝑑𝑡
(𝐿1): 𝑟2�̇�2𝑖𝑒

𝑖𝜃2 + 𝑟3�̇�3𝑖𝑒
𝑖𝜃3 + 𝑟4�̇�4𝑖𝑒

𝑖𝜃4 = 0 

𝐿1𝑥: − 𝑟2�̇�2𝑠2 − 𝑟3�̇�3𝑠3 − 𝑟4�̇�4𝑠4 = 0 

𝐿1𝑦: + 𝑟2�̇�2𝑐2 + 𝑟3�̇�3𝑐3 + 𝑟4�̇�4𝑐4 = 0 

𝐶𝐸: �̇�3𝑝 = �̇�3 

𝐕𝒑 =
𝑑

𝑑𝑡
(𝑂𝑃⃗⃗⃗⃗  ⃗) =

𝑑

𝑑𝑡
(𝐫2 + 𝐫3𝑝) =  𝑟2�̇�2𝑖𝑒

𝑖𝜃2 + 𝑟3𝑝�̇�3𝑝𝑖𝑒
𝑖𝜃3𝑝 

𝑉𝑝𝑥 = − 𝑟2�̇�2𝑠2 − 𝑟3𝑝�̇�3𝑝𝑠3𝑝 

𝑉𝑝𝑦 = 𝑟2�̇�2𝑐2 + 𝑟3𝑝�̇�3𝑝𝑐3𝑝 

 

 

Step 5: Write the equations in linear form:   

This is personal preference, but I like to solve the model velocity unknowns in one matrix, and 

then follow up with equations to solve for Vp.  That is what we will do here: 

 

For the model, three equations (L1x, L1y, CE) and three unknowns (�̇�3, �̇�3𝑝, �̇�4), set up the 

equations in the matrix form, Av = b 

Let the rows be the equations, columns be the unknowns:  
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[
−𝑟3𝑠3 −𝑟4𝑠4 0
+𝑟3𝑐3 −𝑟4𝑠4 0
−1 0 1

] {

�̇�3
�̇�4
�̇�3𝑝

} = {
𝑟2�̇�2𝑠2
−𝑟2�̇�2𝑐2

0

} 

And 

𝑉𝑝𝑥 = − 𝑟2�̇�2𝑠2 − 𝑟3𝑝�̇�3𝑝𝑠3𝑝 

𝑉𝑝𝑦 = 𝑟2�̇�2𝑐2 + 𝑟3𝑝�̇�3𝑝𝑐3𝑝 

 

Step 6: Solution approach: 

First, solve the matrix equation as: v = A-1b 

�̇�3 = 𝐯(1), �̇�4 = 𝐯(2), �̇�3𝑝 = 𝐯(3) 
This gives all the values needed to solve for Vpx, Vpy. 

 

Discussion: 

The results require a matrix inverse to solve and therefore use of calculator, excel, Matlab or a C 

program.   

1) The solution is linear in the velocities as shown by the linear equations.   This means that if 

the input velocity were doubled, the output velocity would double. 

2) These solution equations are valid at any position of the mechanism (except those when A is 

invertible).    

3) pseudo code for a program to evaluate the velocity over range of motion on the skid steer 

might look like this: 

 

 Start 

 Clear workspace 

 Define constant parameters (link lengths, etc) 

 Define input velocity 

 Loop through input displacement from min to max 

 For input displacement_i 

 Solve position 

 Define A, b matrix/vector 

 Solve velocity unknowns 

 Store results (Vpx, Vpy) in array 

 End loop through displacement 

 Plot results (plot(Vpx, Vpy) 

 

  



 

ME 3610 Course Notes - Outline Part II -12 

Example 4:  Bobcat 650S loader: http://www.youtube.com/watch?v=aqK0qsXH3e4 

Consider now the Bobcat 650 S loader with a model that includes the input cylinder but ignores 

the bucket as shown in the figure below.  This example will consider an arbitary orientation for 

links 1-4.  Given the fixed link lengths, input angle of link 2, input angular velocity of link 2, set 

up the equations to solve for the velocity unknowns in the model equations, and for the velocity 

of P.  Describe a solution procedure for these equations. 

 

 
 

Solution: 

Step 1: get the position solution: 

1. Schematic (see above) 

2. Mobility: 𝑀 = 3(4 − 1) − 2(4) − 0 = 1 

3. Vector model (see above) 

4. position unknowns  𝜃3, 𝜃3𝑝 , 𝜃4;  𝜃2, = 𝑖𝑛𝑝𝑢𝑡 
5. Equations 

𝐿1: 𝐫1 + 𝐫2 + 𝐫3 + 𝐫4 = 0 

𝐿2: 𝐫1𝑏 + 𝐫2 + 𝐫3𝑏 + 𝐫5 = 0 

𝐶𝐸: 𝜃3𝑝 = 𝜃3 + 𝛼3𝑝, 𝜃3𝑏 = 𝜃3 + 𝛼3𝑏 

 

Step 2: List velocity unknowns: 

�̇�2, �̇�3, �̇�3𝑝, �̇�3𝑏 , �̇�4, �̇�5, 𝐕𝒑;  �̇�2 = 𝑖𝑛𝑝𝑢𝑡 

eight unknowns  - need eight equations. 

Step 3: Identify and write equations: 
𝑑

𝑑𝑡
(𝐿1): 𝑟2�̇�2𝑖𝑒

𝑖𝜃2 + 𝑟3�̇�3𝑖𝑒
𝑖𝜃3 + 𝑟4�̇�4𝑖𝑒

𝑖�̇�4 = 0 

𝑑

𝑑𝑡
(𝐿2): 𝑟2�̇�2𝑖𝑒

𝑖𝜃2 + 𝑟3𝑏�̇�3𝑏𝑖𝑒
𝑖𝜃3𝑏 + �̇�5𝑒

𝑖�̇�5 + 𝑟5�̇�5𝑖𝑒
𝑖𝜃5 = 0 

 

4 equations from loop vector equation 
𝑑

𝑑𝑡
(𝐶𝐸): �̇�3𝑝 = �̇�3, �̇�3𝑏 = �̇�3  

 

 

 

P 

r2 

r3 

r4 

r1 

r3c 

c r3b 
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2 equations from constraint equation  

𝐕𝒑 =
𝑑

𝑑𝑡
(𝑂𝑃⃗⃗⃗⃗  ⃗) =

𝑑

𝑑𝑡
(𝐫2 + 𝐫3𝑝) =  𝑟2�̇�2𝑖𝑒

𝑖𝜃2 + 𝑟3𝑝�̇�3𝑝𝑖𝑒
𝑖𝜃3𝑝 

2 equations of a vector chain from ground to point P 

 

Total = 8 equations 

 

Step 4: Expand equations into scalar form:  
𝑑

𝑑𝑡
(𝐿1): 𝑟2�̇�2𝑖𝑒

𝑖𝜃2 + 𝑟3�̇�3𝑖𝑒
𝑖𝜃3 + 𝑟4�̇�4𝑖𝑒

𝑖𝜃4 = 0 

𝐿1𝑥: − 𝑟2�̇�2𝑠2 − 𝑟3�̇�3𝑠3 − 𝑟4�̇�4𝑠4 = 0 

𝐿1𝑦: + 𝑟2�̇�2𝑐2 + 𝑟3�̇�3𝑐3 + 𝑟4�̇�4𝑐4 = 0 

𝑑

𝑑𝑡
(𝐿2): 𝑟2�̇�2𝑖𝑒

𝑖𝜃2 + 𝑟3𝑏�̇�3𝑏𝑖𝑒
𝑖𝜃3𝑏 + �̇�5𝑒

𝑖�̇�5 + 𝑟5�̇�5𝑖𝑒
𝑖𝜃5 = 0 

𝐿2𝑥: − 𝑟2�̇�2𝑠2 − 𝑟3𝑏�̇�3𝑏𝑠3𝑏 + �̇�5𝑐5 − 𝑟5�̇�5𝑠5 = 0 

𝐿2𝑦: 𝑟2�̇�2𝑐2 + 𝑟3𝑏�̇�3𝑏𝑐3𝑏 + �̇�5𝑠5 + 𝑟5�̇�5𝑐5 = 0 

𝐶𝐸: �̇�3𝑝 = �̇�3, �̇�3𝑏 = �̇�3 

𝐕𝒑 =
𝑑

𝑑𝑡
(𝑂𝑃⃗⃗⃗⃗  ⃗) =

𝑑

𝑑𝑡
(𝐫2 + 𝐫3𝑝) =  𝑟2�̇�2𝑖𝑒

𝑖𝜃2 + 𝑟3𝑝�̇�3𝑝𝑖𝑒
𝑖𝜃3𝑝 

𝑉𝑝𝑥 = − 𝑟2�̇�2𝑠2 − 𝑟3𝑝�̇�3𝑝𝑠3𝑝 

𝑉𝑝𝑦 = 𝑟2�̇�2𝑐2 + 𝑟3𝑝�̇�3𝑝𝑐3𝑝 

 

 

Step 5: Write the equations in linear form:   

This is personal preference, but I like to solve the model velocity unknowns in one matrix, and 

then follow up with equations to solve for Vp.  That is what we will do here: 

 

For the model, three equations (L1x, L1y, CE) and three unknowns (�̇�3, �̇�3𝑝, �̇�4), set up the 

equations in the matrix form, Av = b 

Let the rows be the equations, columns be the unknowns:  

[
 
 
 
 
 
− 𝑟2𝑠2 −𝑟3𝑠3
 𝑟2𝑐2 𝑟3𝑐3

0 0
0 0

−𝑟4𝑠4 0
𝑟4𝑐4 0

− 𝑟2𝑠2 0
𝑟2𝑐2 0

−𝑟3𝑏𝑠3𝑏 0
𝑟3𝑏𝑐3𝑏 0

0 −𝑟5𝑠5
0 𝑟5𝑐5

0 1
0 0

−1 0
1 −1

0 0
0 0 ]

 
 
 
 
 

{
 
 
 

 
 
 
�̇�2
�̇�3
�̇�3𝑏
�̇�3𝑝

�̇�4
�̇�5 }
 
 
 

 
 
 

=

{
 
 

 
 

0
0

−�̇�5𝑐5
−�̇�5𝑠5
0
0 }

 
 

 
 

 

 

And 

𝑉𝑝𝑥 = − 𝑟2�̇�2𝑠2 − 𝑟3𝑝�̇�3𝑝𝑠3𝑝 

𝑉𝑝𝑦 = 𝑟2�̇�2𝑐2 + 𝑟3𝑝�̇�3𝑝𝑐3𝑝 

 

Step 6: Solution approach: 

First, solve the matrix equation as: v = A-1b 

�̇�2 = 𝐯(1), �̇�3 = 𝐯(2), �̇�3𝑏 = 𝐯(3), 𝑒𝑡𝑐 
This gives all the values needed to solve for Vpx, Vpy. 

 

Discussion: 
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The results require a matrix inverse to solve and therefore use of calculator, excel, Matlab or a C 

program.   

1) The solution is linear in the velocities as shown by the linear equations.   This means that if 

the input velocity were doubled, the output velocity would double. 

2) These solution equations are valid at any position of the mechanism (except those when A is 

invertible).    

3) the position problem is a little harder.  As a recommendation, solve assuming that theta2 is the 

input displacement, for a full range of motion.  
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Example 5: 

(Taken from the Pool-lift team, F12) 
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Velocity Analysis:  Given the exercise mechanism shown in the picture below with a simplified 

schematic, vector and position model.  The rotation rate of the handle, link 2 (theta2_dot = 1 

rad/s) is given along with other link lengths and orientations.  Solve for the velocity of point Q 

attached to the seat as shown, as well as the other unknown velocities in the model.  Use the 

method covered in class and show all your work.   

 

 

 

𝑟1⃗⃗⃗  + 𝑟2⃗⃗  ⃗ + 𝑟3⃗⃗  ⃗ + 𝑟4⃗⃗⃗  = 0 

𝜃3𝑄 = 𝜃3 + 325 

r1 = 510 cm; r2 = 120 cm; r3 =538 cm; r4 = 300 cm, r2P = 500 cm; r3Q = 150 cm; 

1 = 250 deg; 2 = 0 deg; 3 = 117 deg; 4 = 0 deg; branch = -1 

2_dot = 1 rad/s 

 

  

 

  
r2a 

r
2P

 

r
1
 

r
4
 

r
3
 

325 deg 

 

P 

r
3Q

 

Q 
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3) Velocity analysis: Classical techniques (instant centers, centrodes, etc.) 

 

Classical techniques for velocity analysis consists predominantly of graphical techniques and 

determination of instant centers.  The graphical techniques involved drawing velocity polygons 

that form geometric equivalents of our derivative loop closure equations.  Due to the fact that 

analytical techniques can be easily programmed and formalized, graphical techniques have been 

largely outdated.  However, some of these techniques provide a significant amount of insight into 

the problem and will be reviewed briefly here.  The techniques reviewed are: 

 Instant Centers 

 Centrodes 

 

 

Instant Centers of Velocity or instant centers are a point common to two bodies which has the 

same velocity for both bodies (at that instant in time).  The number of instant centers for an n-

body linkage is: 

c=n*(n-1)/2. 

 

 

 

The instant center of two links connected by a revolute is trivial (it is that revolute).  The instant 

center for two links connected by a slider is also simple (The center of curvature of the slider 

axis).   

 
For bodies not connected immediately by a joint, the technique relies on Kennedy’s Theorem:  

 

Kennedy’s Theorem: Any three bodies in plane motion will have three instant centers and they 

will lie on the same straight line.   

 

1 
2 

I12 

1 

2 

I12 
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Applying Kennedy’s theorem to a four bar: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applying Kennedy’s theorem to a Slider-crank: 

 

 

 

 

 

 

 

 

 

 

 

 

A few examples of the use of instant centers: 
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Vehicle Suspension Design: 
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Centrodes: 
A Centrode is the curve defined by the locations of the instant center over the range of motion of 

a mechanism.  Each possible instant center can create two centrodes, found by considering the 

motion relative to each of the two links defining the instant center.  One centrode will be called 

the fixed centrode and one a moving centrode.  The centrodes can then recreate the motion of the 

fourbar by rolling (without slip) in contact with each other.  As an example, fourbars can be used 

to define the profile for non-circular gears (for example elliptical gears).   

  



 

ME 3610 Course Notes - Outline Part II -21 

Simple KinetoStatic force analysis assuming low dynamic effects: 

 

Kinetostatic force analysis provides a direct method to solve for forces in machines.  In this 

method, we will assume dynamic effects in the mechanism are minimal.  Thus, we can solve for 

the forces in a mechanism based the velocity analysis.  This process is based on the principles of 

conservation of energy (or power here since we assume the constraints are not time-dependent) 

and superposition.   

 

 

Consider the mechanism as a black box as shown in the figure below.  Force and motions are 

applied at the input and force and motion occurs at the output 

 

 

 

 
 

The following assumptions apply to this system: 

1) Problem is treated in an instantaneous sense 

2) Ignore dynamic effects in the mechanism 

3) System is conservative - Energy is not stored or created in the mechanism 

4) Mechanism efficiency is given as  

 

Thus, the input power equals the output power: 

 Pin = Pout 

 

With the power instantaneously defined as,  

 

𝑃 = 𝐅 ∙ 𝐯 

For linear forces/velocity 

 

 

𝑃 = 𝐓 ∙ 𝛚 

For rotational forces/velocity 

 

Further, given 

𝐓 = 𝐫 × 𝐅 

𝐯 = 𝛚 × 𝐫 
 

And, from triple scalar product:  

a.bxc = b.cxa = c.axb 

“black-box Mechanism” 

input output 
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It can be shown these are equal statements. 

 

A relationship between input and output motion and force is then given as: 

 

 

 

 

If we assume that the vin is found in the direction of the input force and similarly, vo is found in 

the direction of the output force, the equation can be rewritten as: 

 

 

 

 

(with * reminding that a particular velocity component is used) 

 

 

This is sometimes expressed as the Mechanical Advantage, defined as: 

 

 

 

For linear systems or 

 

 

 

For rotational systems 

 

 

Application: Method of Virtual work 

More generally, we will call this the method of virtual work, (in virtual work, we ignore time-

varying constraints) in which all the energies are summed on one side of the equation and are set 

equal to zero (no energy is created or stored): 

 

𝐅𝒊 ∙ 𝐯𝒊 + 𝐓𝒋 ∙ 𝝎𝒋 = 0 

 

 

 

(Dynamic forces can be inserted into the virtual work equation).   

 

A few notes: 

1) These are EXTERNAL forces and torques (internal forces / torques do no work) 

2) I prefer to use the virtual work equation: 

3) There is a slight difference in Virtual work and Mechanical Advantage:  In Virtual work, the 

external forces and torques are acting on the mechanism.  In Mechanical advantage, the input is 

acting on the mechanism, the output is the force of the mechanism on the output device.   

 

Extra notes Kinetostatic Force (w/o dynamics) Analysis: 

To complete the kinetostatic force analysis, first apply the idea of mechanical advantage to 

evaluate the input force required for each applied load.  If loads are given on multiple links, then 

evaluate the mechanical advantage for these multiple links.  Second, apply the principle of 
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superposition (these problems are linear in force).  Thus, the total input force is given as the 

superposition of the input forces required for each of the applied loads.   

 

The last possible step to consider here is constraint forces (forces in the bearings).  In line with 

the concept of static force analysis based on conservation of energy, one approach would be to 

repeat the process above for every bearing, but instantaneously eliminate the motion constraint 

from each bearing, and solve for the force required to enforce this constraint.  For example, to 

find the x-component reaction of a bearing, allow that bearing to move (assign it unit velocity) 

instantaneously (i.e., bearing does not change position).  Solve for the mechanical advantage 

relating the x-force at that bearing to all applied loads, and sum to get the total x-directed 

reaction via superposition.  This method is known as the method of Lagrange Multipliers.  If 

only one or two reactions are desired, it is relatively easy to apply.  If all reactions are desired, it 

makes more sense to apply the techniques of kinetostatic analysis (to be covered in upcoming 

topics).   
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Example 1:  Focres in Bobcat 650S loader: http://www.youtube.com/watch?v=aqK0qsXH3e4 

 
Recondsider the simplied model from the velocity example that ignores the bucket, ignores the 

input cylinder, and assumes that links 1 and 3 are horizontal, link 4 is vertical and link 2 is at 45 

degrees.  Also, assume link 2 is the input.   

 
 Given r1 = 161 cm; r2 = 141 cm, r3 = 120 cm, r4 = 100 cm, 2 = 45deg, �̇�2 = .5 rad/s, r3p = 200, 

3p = 135deg, find the input torque required at link 2 to lift a 1000 kg. load placed at point P.   

  

 

P 

r2 

r3 

r4 

r1 

p r3p 

45 
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Solution: 

Step 1: get the velocity solution: 

𝐿1𝑥: −49.85 − 0 + 100 ∗ �̇�4 = 0-�̇�4 = .4985 

𝐿1𝑦: +49.85 + 120 ∗ �̇�3 + 0 = 0 �̇�3 = −.4154 

𝐶𝐸: �̇�3𝑝 = �̇�3   �̇�3𝑝 = −.4154 

 

𝑉𝑝𝑥 = −141 ∗ 0.5 ∗ sin(45) − 200 ∗ −.4154 ∗ sin(135) = 8.896 

𝑉𝑝𝑦 = +141 ∗ 0.5 ∗ cos(45) + 200 ∗ −.4154 ∗ cos(135) = 108.6 

 

Step 5: Setup the conservation of power equations:  
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Example: Kinetic force analysis Consider the rear suspension mechanism shown on the bike 

below with schematic and vector model as defined.  The velocity problem has also been solved 

with results given below.  If a 500 N load is applied at the wheel axle (point P) in the vertical up 

direction, what is the force required in the spring-over-shock member (r2) for equilibrium (force 

directed along the axis of the r2).     

 

 

 

 

r1 = 20cm, r2 =25 cm, r3 = 35 cm,  

1=50 deg, 2=128.5 deg, 3=-85.6 deg, 3b=175 deg, 

r2_dot = 75cm/s, Vpx=5 cm/s, Vpy=125 cm/s, 

  

r1 
r3 

r2 

P 

F=500

N 

r3b 
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 Given the floating arm trebuchet shown as a schematic below.  Assume r2,  r2_dot are the inputs, 

r1 = 173cm, r2 = 100cm, theta3 = 150 deg., r3 =  200cm, r3b 300 cm, and r2_dot = 250 cm/s, 

assume a 100kg weight on the vertical slider, find the force at point P vertical to the bar.   

 
 

 

From Velocity:  

 �̇�3𝑏 = 1.443 

𝑉𝑝𝑥 = 250 ∗ cos(−90) − (200 + 300) ∗ −1.443 ∗ sin(150) = 360.75 

𝑉𝑝𝑦 =  250 ∗ sin(−90) + (200 + 300) ∗ −1.443 ∗ cos(150) = 374.84 

  

r1 

r2 

r3 

r3b 

3=0 

P 
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Given the exercise mechanism shown in the figure below with a resistance torque on link 4, 

solve for the necessary input force applied at P horizontal and to the left to keep the machine 

operating at a rotational speed of 4_dot = +20rpm.  Use the method covered in class and show 

all work. 

 

 

 

T4 = -100Ncm resistance torque, 4_dot = +20rpm, 2b_dot = +10rpm, 

 r1 = 1150, r2a =850, r2b =450, 2b = 100 deg, r3 = 950, r4 = 400 

 

 

 

r2a 

r
2b

 

r
1
 

r
4
 

r
3
 

35 deg 

 

P 
FP 

 

T
4
 


