

2016 Kinematics Summer School Static Balancing of Compliant Mechanisms (SBCM)

Just Herder

© PHIL AYNSLEY PHOTOGRAPH

Tatio Taglion

Quale é stato il principio fondamentale di tutte le mie realizzazioni? Si spiega con una sola parola: *-Semplicità- portata all'estremo possibile.*

What is the fundamental principle of all my creations? That comes down to a single motto: -Simplicity- pushed to the farthest extremes.

Earliest mechanisms

Doing the wrong thing better and better...

> Cave paintings in Valltorta Gorge, Spain, 20,000 BC Kuka Robotics, TAG Heuer

Strength and stiffness... CM toolbox contains... (add one..)

Ever designed a linkage mechanism?

Ever designed a compliant mechanism?

Advantages compliant mechanisms?

Disadvantages compliant mechanisms?

Today

- Static balancing
- Static balancing of compliant mechanisms
 - Mainly rigid body replacement

Gallego Sanchez JA, Herder JL (2009) Synthesis methods in compliant mechanisms: an overview, *2009 ASME IDETC*, 2009, San Diego, California, Paper number DETC2009-86845

Weight lifting

• Requires doing work...

Weight lifting

• Requires doing work... or does it not?

Draw bridge

Draw bridge

CoMe2011, Delft, The Netherlands

Static Balancing

All conservative forces can be cancelled out!

Static Balancing

All conservative forces can be cancelled out!

- Continuous equilibrium
- Constant potential energy
- Neutral stability

Wilmer™

Meager Bridge (Amsterdam)

TUDelft

Anglepoise™

Constant potential energy

$$V_{m} = mgL\cos\varphi$$

$$V_{s} = \frac{1}{2}k\ell^{2} = \frac{1}{2}k\left(a^{2} + r^{2}\right) - kar\cos\varphi$$

$$V_{tot} = cnst + (mgL - kar)\cos\varphi$$

$$Condition: mgL = kar$$

TUDelft

Herder JL (2001) *Energy-free Systems; Theory, conception and design of statically balanced spring mechanisms,* Ph.D. Thesis, Delft University of Technology, ISBN 90-370-0192-0 (http://repository.tudelft.nl/ search: Herder energy-free), DOI: 10.13140/RG.2.1.3942.8966.

ANGLEPOISE LAMP

Light at any Angle at a Finger Touch

PATENTED AT HOME AND ABROAD

$mgL_1 = r_1k_1a_1$

Superposition: first degree of freedom

Modification:

shift of spring element

$mgL_2 = r_2k_2a_2$

......

Superposition: second degree of freedom

Modification:

shift of spring element

 $mgL_1 = r_1k_1a_1$ $mgL_2 = r_2k_2a_2$

Superposition: combination of the two degrees of freedom

mL=m'L'

Modification: elongate lever while reducing mass

Modification: rotate both of the spring elements

www.anglepoise.com

Past work: Armon mobile arm support

Herder JL, Vrijlandt N, Antonides T, Cloosterman M, Mastenbroek PL (2006) Principle and design of a mobile arm support for people with muscular weakness, *Journal of Rehabilitation Research and Development*, 43(5)591-604 (DOI: 10.1682/JRRD.2006.05.0044).

Zero-gravity force environment

1. Start with ZFL solution

- 1. Start with ZFL solution
- 2. Replace ZFL by
 - normal springs (l_0)
- Apply rolling contact joint (optional)
- 4. Extend vector loop with energy eq.:

 $a_{1} + \ell_{1} = r_{1} + r_{3}$ $a_{2} + \ell_{2} = r_{1} + r_{3}$ $V_{1} + V_{2} = K$

In this case two loops, one for each spring

Herder JL (2001) *Energy-free Systems; Theory, conception and design of statically balanced spring mechanisms,* Ph.D. Thesis, Delft University of Technology, ISBN 90-370-0192-0 (http://repository.tudelft.nl/ search: Herder energy-free), DOI: 10.13140/RG.2.1.3942.8966.

$$0 = A_{x} + R\varphi_{i} + r_{2}\sin\varphi_{i} + \ell_{1,i}\cos\varphi_{1,i}$$

$$0 = A_{y} + R + r_{2}\cos\varphi_{i} - \ell_{1,i}\sin\varphi_{1,i}$$

$$0 = -A_{x} - R\varphi_{i} - r_{2}\sin\varphi_{i} + \ell_{2,i}\cos\varphi_{2,i}$$

$$0 = A_{y} + R + r_{2}\cos\varphi_{i} - \ell_{2,i}\sin\varphi_{2,i}$$

$$0 = \frac{1}{2}k(\ell_{1,i} - \ell_{01})^{2} + \frac{1}{2}k(\ell_{2,i} - \ell_{02})^{2} - K$$

 $a_{1} + \ell_{1} = r_{1} + r_{3}$ $a_{2} + \ell_{2} = r_{1} + r_{3}$ $V_{1} + V_{2} = K$

$$0 = A_{x} + R\varphi_{i} + r_{2}\sin\varphi_{i} + \ell_{1,i}\cos\varphi_{1,i}$$

$$0 = A_{y} + R + r_{2}\cos\varphi_{i} - \ell_{1,i}\sin\varphi_{1,i}$$

$$0 = -A_{x} - R\varphi_{i} - r_{2}\sin\varphi_{i} + \ell_{2,i}\cos\varphi_{2,i}$$

$$0 = A_{y} + R + r_{2}\cos\varphi_{i} - \ell_{2,i}\sin\varphi_{2,i}$$

$$0 = \frac{1}{2}k(\ell_{1,i} - \ell_{01})^{2} + \frac{1}{2}k(\ell_{2,i} - \ell_{02})^{2} - K$$

- 1. Assume springs are preselected, then k, l_{01} and l_{02} are known.
- 2. Also preselect energy level K
- 3. Then **5n** equations and **10** (r_1 , r_2 , r_{k1} , r_{k2} , φ_{01} , φ_{02} , A_{1x} , A_{1y} , A_{2x} , A_{2y}) + **4n** (ℓ_1 , ℓ_2 , ψ_1 , ψ_2) unknowns.
- 4. From 5n=10+4n we find at most 10 precision points

TUDelft

Nr of	Nr of scal.	Number of scalar unknowns		Number of free choices	
pos. (n)	eqs. (5n)	(plus symbols) (10+4n)		(plus suggested symbols) (10-n)	
1	5	14	$(\ell_{1,1}, \ell_{2,1}, \psi_{1,1}, \psi_{2,1}, r_1, r_2, r_{k1}, r_{k2})$	9	$(r_1, r_{k1}, r_{k2}, \varphi_{01}, \varphi_{02}, A_{1x}, A_{1y}, A_{2x})$
			$\varphi_{01}, \varphi_{02}, A_{1x}, A_{1y}, A_{2x}, A_{2y}$		A_{2y}
2	10	18	$(above + \ell_{1,2}, \ell_{2,2}, \psi_{1,2}, \psi_{2,2})$	8	$(r_{kl}, r_{k2}, \varphi_{0l}, \varphi_{02}, A_{lx}, A_{ly}, A_{2x}, A_{2y})$
3	15	22	$(above + \ell_{1,3}, \ell_{2,3}, \psi_{1,3}, \psi_{2,3})$	7	$(r_{k2}, \varphi_{01}, \varphi_{02}, A_{1x}, A_{1y}, A_{2x}, A_{2y})$
4	20	26	$(above + \ell_{1,4}, \ell_{2,4}, \psi_{1,4}, \psi_{2,4})$	6	$(\varphi_{01}, \varphi_{02}, A_{1x}, A_{1y}, A_{2x}, A_{2y})$
5	25	30	$(above + \ell_{1,5}, \ell_{2,5}, \psi_{1,5}, \psi_{2,5})$	5	$(\varphi_{02}, A_{1x}, A_{1y}, A_{2x}, A_{2y})$
6	30	34	$(above + \ell_{1,6}, \ell_{2,6}, \psi_{1,6}, \psi_{2,6})$	4	$(A_{1x}, A_{1y}, A_{2x}, A_{2y})$
7	35	38	$(above + \ell_{1,7}, \ell_{2,7}, \psi_{1,7}, \psi_{2,7})$	3	(A_{1y}, A_{2x}, A_{2y})
8	40	42	$(above + \ell_{1,8}, \ell_{2,8}, \psi_{1,8}, \psi_{2,8})$	2	(A_{2x}, A_{2y})
9	45	46	$(above + \ell_{1,9}, \ell_{2,9}, \psi_{1,9}, \psi_{2,9})$	1	(A_{2y})
10	50	50	$(above + \ell_{1,10}, \ell_{2,10}, \psi_{1,10}, \psi_{2,10})$	0	

Static Balancing of Compliant Mech.

Static Balancing of Compliant Mech.

Herder JL, Berg FPA van den (2000) Statically balanced compliant mechanisms (SBCM's), an example and prospects, *ASME DETC* Sept 10-13, Baltimore, Maryland, DETC2000/MECH-14144.

Rolling contact forceps

fuDelft

Herder JL, Berg FPA van den (2000) Statically balanced compliant mechanisms (SBCM's), an example and prospects, *ASME DETC* Sept 10-13, Baltimore, Maryland, DETC2000/MECH-14144.

Does an opposite spring provide static balance?

No they don't, in fact they double the stiffness

Static Balancing of Compliant Mech.

Lamers AJ, Gallego Sanchez JA, Herder JL (2015) Design of a Statically Balanced Fully Compliant Grasper, *Mechanism and Machine Theory* **92**:230-239 (DOI: 10.1016/j.mechmachtheory.2015.05.014, IF 1.66).

Design steps

Step 1: Known rigid-link SB mech.

JL Herder, 2001

Step 2: Replace spring by CM

Step 3: Replace joints by CM

Step 4: PRB modeling

Few parameters, e.g. k_A , k_B , k_C , λ_c

Step 5: Kinematics, loop closure

Few parameters, e.g. k_A , k_B , k_C , λ_c

Step 5: Kinematics, loop closure⁺

Step 6: Dimensioning the CM

Aaron Stapel, 2004

Step 7: Instrument design

Step 8: Detailed design

Aaron Stapel, 2004

Toon Lamers, 2012

Step 9: prototyping

Toon Lamers, 2012

Challenge the future

Delft University of Technology

TUDelft

Morsch F, Herder JL (2010) Design of a generic zero stiffness compliant joint, *2010 ASME IDETC*, August 15-18, 2010, Montreal, Canada, Paper number DETC2010-28351.

(Near) zero stiffness joint

	Average moment reduction, $\varphi = 0$ -end trajectory [%]	Max moment reduction, $\varphi = 0$ -end trajectory [%]	End trajectory [rad]
PRBM	95	98	1.42
FEM	93	93	1.28
Experiment	70	63	0.58

Morsch F, Herder JL (2010) Design of a generic zero stiffness compliant joint, *2010 ASME IDETC*, August 15-18, 2010, Montreal, Canada, Paper number DETC2010-28351.

Straight-line self-guiding SBCM

Rosenberg EJ, Radaelli G, Herder JL (2010) An energy approach to a 2DoF complaint parallel mechanism with self-guiding statically-balanced straight-line behavior, *2010 ASME IDETC*, Paper nr DETC2010-28447.

Static Balancing of Compliant Mech.

Static Balancing of Compliant Mech.

Statically balanced gripper

Karin Hoetmer, Charles Kim, Geoffrey Woo, Just Herder 2009

Delft University of Technology Bucknell University

Hoetmer K, Woo G, Kim C, Herder JL (2010) Negative stiffness building blocks for statically balanced compliant mechanisms: design and testing, *ASME J of Mech and Rob*, 2(4)041007 (DOI: 10.1115/1.4002247).

Constant force unit Force composition method

Vibration Isolator

TUDelft

Dunning AG, Tolou N, Herder JL (2013) A Compact Low-Stiffness Six Degrees of Freedom Compliant Precision Stage, *Precision Engineering* 37(2)380-388 (http://dx.doi.org/10.1016/j.precisioneng.2012.10.007).

Statically balanced micromechanisms

Tolou N, Henneken VA, Herder JL (2010) Statically balanced compliant micro mechanisms (SB-MEMS): concepts and simulation, *2010 ASME IDETC*, August 15-18, 2010, Montreal, Paper DETC2010-28406.

Constant force

Preloading with ON/OFF switch

Pluimers PJ, Tolou N, Jensen BD, Howell LL, Herder JL (2012) A compliant on/off connection mechanism for preloading statically balanced compliant mechanisms, *ASME 2011 IDETC*, paper DETC2012-71509.

Towards zero force

Next next generation

Lambert P, Herder JL (2015) A Novel Parallel Haptic Device with 7 Degrees of Freedom, *World Haptics Conference 2015*, Chicago, p183-188 (DOI: 10.1109/WHC.2015.7177711).

TUDelft

Strength and stiffness... CM toolbox contains... Stiffness is not...

Thank you!

