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Abstract. Computational Fluid Dynamics (CFD) was used to assess whether
adding a stationary diffuser, known as wind lens, can improve the power perfor-
mance of vertical axis wind turbines. Transient, two-dimensional simulations were
conducted using a dynamic mesh and the Shear-Stress Transport (SST) k−ω model
to calculate the generated torque. Blades were set to rotate at a constant angular
velocity to maintain an optimal TSR (tip speed ratio) at the studied freestream
wind speed. The product of this angular velocity (in rad/s) and the calculated
torque (in Nm) was assumed to be the mechanical power harvested by the turbine.
The simulation setup was validated using experimental data. It was found that
a properly designed wind lens enhances power production in two ways. First, it
collects and guides a larger air flow into the turbine (the inlet effect). Second, it
induces a flow separation along its trailing edge, which leads to a reduced pressure
zone downwind of the outlet of the lens (the outlet effect). The enhanced pressure
difference between upstream and downstream regions drives a larger flow into the
turbine, which increases power generation. It was also found that if the throat of
the diffuser is not sufficiently large, the shear caused by its inner walls decelerates
the blades. This negative impact can dominate the above-described inlet/outlet
effects, which leads to a net reduction in power production. Although no rigorous
optimization was conducted to identify an optimal geometry for the diffuser, the
proposed lens was found to improve power production of the turbine by more
than 400%. It is shown that substituting the augmented turbine with a large open
turbine with a swept area equal to the maximum cross-sectional area of the lens is
a more effective strategy (increases power production by 600%), however, it may
cost considerably more.
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1 Introduction

The global wind energy industry is rapidly expanding its capacity. According to a report
by the U.S. Department of Energy (DOE), approximately 20% of the United States total
energy is expected to be produced via wind power by 2030 [1]. The contribution of wind
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Table 1. The average moment and power production of wind turbines with and without lens.

Style Average moment (Nm) Average power (W)

Small turbine (no lens) 0.0033 0.1980

Small turbine with lens 0.0161 0.9660

Large turbine (as large as the lens) 0.11 1.98

4 Conclusions

Although augmenting a VAWT with a diffuser (wind lens) increases the power produc-
tion, making a large turbine of the same size as the lens is a more effective strategy to
enhance the annual energy production. For the turbine and non-optimal diffuser proposed
here, the lens-augmented turbine harvests 440% more power than the unaugmented tur-
bine. Substituting the unaugmented turbine with a scaled-up version of the same size
of the lens, however, results in harvesting 640% more power. On the other hand, the
costs associated with equipping an existing VAWT with a lens is significantly less than
substituting the turbine with a large-scale version. In other words, wind lenses should
be viewed as inexpensive and effective aftermarket options to improve performance of
existing VAWT. In a comprehensive economic exploration of Diffuser Augmented Wind
Turbines (DAWTs) by the DOE in 1981 [26], there was a positive reaction to this concept
for smaller scale HAWTs. With the trend towards bigger turbines, the concept fell by
the wayside. For the small scale VAWTs, however, the diffuser has its place to shine.
Broader research could provide a more accurate comparison between augmenting an
existing VAWT with a wind lens and utilizing a scaled-up VAWT with a rotor area equal
to the cross section of the lens. This includes identifying the optimal geometry of the
lens, calculating the aerodynamic forces acting on each setup, and finally, investigating
the costs associated with each strategy.
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