The Gamma Ray Production Cross Section of 134 Xe(n, n' γ) 134 Xe Reaction

Eungkyun Kim

TTU Electrical Engineering

A new nuclear level that decays to the ground state was recently discover in ¹³⁴Xe emitting a 2485.7 keV gamma ray using neutrons inelastically scattered off a ¹³⁴XeF₂ target. This discovery is particularly important in neutrinoless double-beta decay ($0\nu\beta\beta$) experiments as the energy of this emitted gamma ray is highly proximal to the region of interest of $0\nu\beta\beta$ decay (2457.8 keV), and it is crucial to minimize the limit of background in the search for $0\nu\beta\beta$ decay.

Two experiments, KamLAND-Zen and EXO-200, are studying $0\nu\beta\beta$ decay of ¹³⁶Xe using a highly enriched source material of ¹³⁶Xe. However, significant fractions of ¹³⁴Xe still remain (8.89% ¹³⁴Xe and 19.1% ¹³⁴Xe for KamLAND-Zen and EXO-200, respectively). The experimenters' need to account for the fractions of ¹³⁴Xe underscores the importance of our knowledge of backgrounds in ¹³⁴Xe even further.

To contribute to the understanding of potential neutron-induced backgrounds on 134 Xe, I used data collected at Triangle Universities Nuclear Laboratory (TUNL) to calculate the cross section of 134 Xe(n, n' γ) 134 Xe reaction at incident neutron energies of 4MeV, 8MeV, and 10 MeV.